Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Immunol ; 7(70): eabj1640, 2022 04 29.
Article in English | MEDLINE | ID: mdl-35486676

ABSTRACT

Humans have four IgG antibody subclasses that selectively or differentially engage immune effector molecules to protect against infections. Although IgG1 has been studied in detail and is the subclass of most approved antibody therapeutics, increasing evidence indicates that IgG3 is associated with enhanced protection against pathogens. Here, we report that IgG3 has superior capacity to mediate intracellular antiviral immunity compared with the other subclasses due to its uniquely extended and flexible hinge region, which facilitates improved recruitment of the cytosolic Fc receptor TRIM21, independently of Fc binding affinity. TRIM21 may also synergize with complement C1/C4-mediated lysosomal degradation via capsid inactivation. We demonstrate that this process is potentiated by IgG3 in a hinge-dependent manner. Our findings reveal differences in how the four IgG subclasses mediate intracellular immunity, knowledge that may guide IgG subclass selection and engineering of antiviral antibodies for prophylaxis and therapy.


Subject(s)
Antiviral Agents , Immunoglobulin G , Antibodies, Viral , Complement System Proteins , Humans , Receptors, Fc
2.
J Immunol ; 203(6): 1571-1578, 2019 09 15.
Article in English | MEDLINE | ID: mdl-31413105

ABSTRACT

Heme is a critical danger molecule liberated from hemeproteins in various conditions, including from hemoglobin in hemolytic diseases. Heme may cause thromboinflammatory damage by activating inflammatory and hemostatic pathways, such as complement, the TLRs, coagulation, and platelets. In this study, we explored the effect of single and dual inhibition of complement component C5 and TLR coreceptor CD14 on heme-induced thromboinflammation in an ex vivo human whole blood model. Heme induced a dose-dependent activation of complement via the alternative pathway. Single inhibition of C5 by eculizumab attenuated the release of IL-6, IL-8, TNF, MCP-1, MIP-1α, IFN-γ, LTB-4, MMP-8 and -9, and IL-1Ra with more than 60% (p < 0.05 for all) reduced the upregulation of CD11b on granulocytes and monocytes by 59 and 40%, respectively (p < 0.05), and attenuated monocytic tissue factor expression by 33% (p < 0.001). Blocking CD14 attenuated IL-6 and TNF by more than 50% (p < 0.05). In contrast to single inhibition, combined C5 and CD14 was required for a significantly attenuated prothrombin cleavage (72%, p < 0.05). Markers of thromboinflammation were also quantified in two patients admitted to the hospital with sickle cell disease (SCD) crisis. Both SCD patients had pronounced hemolysis and depleted plasma hemopexin and haptoglobin. Plasma heme and complement activation was markedly increased in one patient, a coinciding observation as demonstrated ex vivo. In conclusion, heme-induced thromboinflammation was largely attenuated by C5 inhibition alone, with a beneficial effect of adding a CD14 inhibitor to attenuate prothrombin activation. Targeting C5 has the potential to reduce thromboinflammation in SCD crisis patients.


Subject(s)
Complement C5/metabolism , Heme/metabolism , Inflammation/metabolism , Lipopolysaccharide Receptors/metabolism , Adult , Anemia, Sickle Cell/metabolism , Animals , Blood Coagulation/physiology , Complement Activation/physiology , Cytokines/metabolism , Granulocytes/metabolism , Hemolysis/physiology , Humans , Male , Monocytes/metabolism , Swine , Thromboplastin/metabolism
3.
Cell Host Microbe ; 25(4): 617-629.e7, 2019 Apr 10.
Article in English | MEDLINE | ID: mdl-30926239

ABSTRACT

The complement system is vital for anti-microbial defense. In the classical pathway, pathogen-bound antibody recruits the C1 complex (C1qC1r2C1s2) that initiates a cleavage cascade involving C2, C3, C4, and C5 and triggering microbial clearance. We demonstrate a C4-dependent antiviral mechanism that is independent of downstream complement components. C4 inhibits human adenovirus infection by directly inactivating the virus capsid. Rapid C4 activation and capsid deposition of cleaved C4b are catalyzed by antibodies via the classical pathway. Capsid-deposited C4b neutralizes infection independent of C2 and C3 but requires C1q antibody engagement. C4b inhibits capsid disassembly, preventing endosomal escape and cytosolic access. C4-deficient mice exhibit heightened viral burdens. Additionally, complement synergizes with the Fc receptor TRIM21 to block transduction by an adenovirus gene therapy vector but is partially restored by Fab virus shielding. These results suggest that the complement system could be altered to prevent virus infection and enhance virus gene therapy efficacy.


Subject(s)
Adenovirus Infections, Human/immunology , Adenoviruses, Human/immunology , Capsid/metabolism , Complement C4/metabolism , Immunity, Humoral , Immunologic Factors/metabolism , Virus Inactivation , Animals , Antibodies, Viral/metabolism , Cell Line , Complement C1/metabolism , Disease Models, Animal , Mice , Mice, Knockout , Protein Binding
4.
Proc Natl Acad Sci U S A ; 115(41): 10440-10445, 2018 10 09.
Article in English | MEDLINE | ID: mdl-30209217

ABSTRACT

Adenovirus has enormous potential as a gene-therapy vector, but preexisting immunity limits its widespread application. What is responsible for this immune block is unclear because antibodies potently inhibit transgene expression without impeding gene transfer into target cells. Here we show that antibody prevention of adenoviral gene delivery in vivo is mediated by the cytosolic antibody receptor TRIM21. Genetic KO of TRIM21 or a single-antibody point mutation is sufficient to restore transgene expression to near-naïve immune levels. TRIM21 is also responsible for blocking cytotoxic T cell induction by vaccine vectors, preventing a protective response against subsequent influenza infection and an engrafted tumor. Furthermore, adenoviral preexisting immunity can lead to an augmented immune response upon i.v. administration of the vector. Transcriptomic analysis of vector-transduced tissue reveals that TRIM21 is responsible for the specific up-regulation of hundreds of immune genes, the majority of which are components of the intrinsic or innate response. Together, these data define a major mechanism underlying the preimmune block to adenovirus gene therapy and demonstrate that TRIM21 efficiently blocks gene delivery in vivo while simultaneously inducing a rapid program of immune transcription.


Subject(s)
Adenoviridae Infections/therapy , Adenoviridae/immunology , Antibodies/immunology , Fibrosarcoma/therapy , Genetic Therapy , Ribonucleoproteins/physiology , Vaccination , Adenoviridae Infections/genetics , Adenoviridae Infections/immunology , Animals , Fibrosarcoma/genetics , Fibrosarcoma/immunology , Gene Transfer Techniques , Genetic Vectors , Mice , Mice, Inbred C57BL , Mice, Knockout , Transgenes , Tumor Cells, Cultured
5.
Nat Commun ; 9(1): 621, 2018 02 12.
Article in English | MEDLINE | ID: mdl-29434196

ABSTRACT

Albumin and IgG have remarkably long serum half-lives due to pH-dependent FcRn-mediated cellular recycling that rescues both ligands from intracellular degradation. Furthermore, increase in half-lives of IgG and albumin-based therapeutics has the potential to improve their efficacies, but there is a great need for robust methods for screening of relative FcRn-dependent recycling ability. Here, we report on a novel human endothelial cell-based recycling assay (HERA) that can be used for such pre-clinical screening. In HERA, rescue from degradation depends on FcRn, and engineered ligands are recycled in a manner that correlates with their half-lives in human FcRn transgenic mice. Thus, HERA is a novel cellular assay that can be used to predict how FcRn-binding proteins are rescued from intracellular degradation.


Subject(s)
Biological Assay/methods , Endothelial Cells/metabolism , Receptors, Fc/metabolism , Animals , Endothelial Cells/chemistry , Humans , Immunoglobulin G/metabolism , Mice , Mice, Transgenic , Protein Binding , Receptors, Fc/chemistry , Receptors, Fc/genetics , Serum Albumin/metabolism
6.
J Immunol ; 196(8): 3452-3459, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26962230

ABSTRACT

Ab-coated viruses can be detected in the cytosol by the FcR tripartite motif-containing 21 (TRIM21), which rapidly recruits the proteasomal machinery and triggers induction of immune signaling. As such, TRIM21 plays a key role in intracellular protection by targeting invading viruses for destruction and alerting the immune system. A hallmark of immunity is elicitation of a balanced response that is proportionate to the threat, to avoid unnecessary inflammation. In this article, we show how Ab affinity modulates TRIM21 immune function. We constructed a humanized monoclonal IgG1 against human adenovirus type 5 (AdV5) and a panel of Fc-engineered variants with a wide range of affinities for TRIM21. We found that IgG1-coated viral particles were neutralized via TRIM21, even when affinity was reduced by as much as 100-fold. In contrast, induction of NF-κB signaling was more sensitive to reduced affinity between TRIM21 and the Ab variants. Thus, TRIM21 mediates neutralization under suboptimal conditions, whereas induction of immune signaling is balanced according to the functional affinity for the incoming immune stimuli. Our findings have implications for engineering of antiviral IgG therapeutics with tailored effector functions.


Subject(s)
Adenoviruses, Human/immunology , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Neutralizing/immunology , Antibody Affinity/immunology , Immunoglobulin G/immunology , Ribonucleoproteins/immunology , Animals , Cell Line , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B/immunology , Neutralization Tests , Ribonucleoproteins/genetics , Signal Transduction/immunology , Surface Plasmon Resonance
SELECTION OF CITATIONS
SEARCH DETAIL
...