Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Pharmacol Exp Ther ; 370(3): 786-795, 2019 09.
Article in English | MEDLINE | ID: mdl-30936291

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) is a leading monogenetic cause of end-stage renal disease with limited therapeutic repertoire. A targeted drug delivery strategy that directs a small molecule to renal niches around cysts could increase the safety margins of agents that slow the progression of ADPKD but are poorly tolerated due to extrarenal toxicity. Herein, we determined whether previously characterized lysine-based and glutamic acid-based megalin-binding peptides can achieve renal-specific localization in the juvenile cystic kidney (JCK) mouse model of polycystic kidney disease and whether the distribution is altered compared with control mice. We performed in vivo optical and magnetic resonance imaging studies using peptides conjugated to the VivoTag 680 dye and demonstrated that megalin-interacting peptides distributed almost exclusively to the kidney cortex in both normal and JCK mice. Confocal analysis demonstrated that the peptide-dye conjugate distribution overlapped with megalin-positive renal proximal tubules. However, in the JCK mouse, the epithelium of renal cysts did not retain expression of the proximal tubule markers aquaporin 1 and megalin, and therefore these cysts did not retain peptide-dye conjugates. Furthermore, human kidney tumor tissues were evaluated by immunohistochemistry and revealed significant megalin expression in tissues from patients with renal cell carcinoma, raising the possibility that these tumors could be treated using this drug delivery strategy. Taken together, our data suggest that linking a small-molecule drug to these carrier peptides could represent a promising opportunity to develop a new platform for renal enrichment and targeting in the treatment of ADPKD and certain renal carcinomas.


Subject(s)
Drug Delivery Systems/methods , Kidney/drug effects , Peptides/administration & dosage , Polycystic Kidney Diseases/drug therapy , Animals , Aquaporin 1/metabolism , Coloring Agents , Drug Design , Epithelium/metabolism , Glutamic Acid/chemistry , Humans , Kidney Cortex/diagnostic imaging , Kidney Cortex/metabolism , Kidney Neoplasms/metabolism , Kidney Tubules, Proximal/metabolism , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , Lysine/chemistry , Magnetic Resonance Imaging , Mice , Peptides/chemistry , Peptides/pharmacokinetics , Polycystic Kidney Diseases/diagnostic imaging , Tissue Distribution
2.
J Pharmacol Exp Ther ; 369(3): 503-510, 2019 06.
Article in English | MEDLINE | ID: mdl-30894457

ABSTRACT

Underlying pathogenic mechanisms in chronic kidney disease (CKD) include chronic inflammation, oxidant stress, and matrix remodeling associated with dysregulated nuclear factor-κ B, nuclear factor-κ B, and SMAD signaling pathways, respectively. Important cytoprotective mechanisms activated by oxidative inflammatory conditions are mediated by nitrated fatty acids that covalently modify proteins to limit inflammation and oxidant stress. In the present study, we evaluated the effects of chronic treatment with CXA-10 (10-nitro-9(E)-octadec-9-enoic acid) in the uninephrectomized deoxycorticosterone acetate-high-salt mouse model of CKD. After 4 weeks of treatment, CXA-10 [2.5 millligrams per kilogram (mpk), p.o.] significantly attenuated increases in plasma cholesterol, heart weight, and kidney weight observed in the model without impacting systemic arterial blood pressure. CXA-10 also reduced albuminuria, nephrinuria, glomerular hypertrophy, and glomerulosclerosis in the model. Inflammatory MCP-1 and fibrosis (collagen, fibronectin, plasminogen activator inhibitor-1, and osteopontin) renal biomarkers were significantly reduced in the CXA-10 (2.5 mpk) group. The anti-inflammatory and antifibrotic effects, as well as glomerular protection, were not observed in the enalapril-treated group. Also, CXA-10 appears to exhibit hormesis as all protective effects observed in the low-dose group were absent in the high-dose group (12.5 mpk). Taken together, these findings demonstrate that, at the appropriate dose, the nitrated fatty acid CXA-10 exhibits anti-inflammatory and antifibrotic effects in the kidney and limits renal injury in a model of CKD.


Subject(s)
Cytoprotection/drug effects , Desoxycorticosterone Acetate/pharmacology , Kidney Diseases/chemically induced , Kidney Diseases/pathology , Kidney/drug effects , Kidney/pathology , Nitro Compounds/pharmacology , Oleic Acids/pharmacology , Salts/adverse effects , Animals , Desoxycorticosterone Acetate/pharmacokinetics , Kidney/metabolism , Kidney Diseases/metabolism , Male , Mice , Nitro Compounds/pharmacokinetics , Oleic Acids/pharmacokinetics , Oxidative Stress/drug effects , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL