Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer Ther ; 16(8): 1497-1510, 2017 08.
Article in English | MEDLINE | ID: mdl-28468777

ABSTRACT

Acute myelogenous leukemia (AML) is initiated and maintained by leukemia stem cells (LSC). LSCs are therapy-resistant, cause relapse, and represent a major obstacle for the cure of AML. Resistance to therapy is often mediated by aberrant tyrosine kinase (TK) activation. These TKs primarily activate downstream signaling via STAT3/STAT5. In this study, we analyzed the potential to therapeutically target aberrant TK signaling and to eliminate LSCs via the multi-TK inhibitor Debio 0617B. Debio 0617B has a unique profile targeting key kinases upstream of STAT3/STAT5 signaling such as JAK, SRC, ABL, and class III/V receptor TKs. We demonstrate that expression of phospho-STAT3 (pSTAT3) in AML blasts is an independent prognostic factor for overall survival. Furthermore, phospho-STAT5 (pSTAT5) signaling is increased in primary CD34+ AML stem/progenitors. STAT3/STAT5 activation depends on tyrosine phosphorylation, mediated by several upstream TKs. Inhibition of single upstream TKs did not eliminate LSCs. In contrast, the multi-TK inhibitor Debio 0617B reduced maintenance and self-renewal of primary human AML CD34+ stem/progenitor cells in vitro and in xenotransplantation experiments resulting in long-term elimination of human LSCs and leukemia. Therefore, inhibition of multiple TKs upstream of STAT3/5 may result in sustained therapeutic efficacy of targeted therapy in AML and prevent relapses. Mol Cancer Ther; 16(8); 1497-510. ©2017 AACR.


Subject(s)
Antigens, CD34/metabolism , Cell Self Renewal/drug effects , Isoxazoles/pharmacology , Leukemia, Myeloid, Acute/pathology , Neoplastic Stem Cells/pathology , Picolinic Acids/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Animals , Apoptosis/drug effects , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Progression , Female , Humans , Mice, Inbred NOD , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Phosphorylation/drug effects , Prognosis , STAT5 Transcription Factor/metabolism , Signal Transduction/drug effects , Survival Analysis , Tumor Stem Cell Assay , Xenograft Model Antitumor Assays
2.
Mol Cancer Ther ; 15(10): 2334-2343, 2016 10.
Article in English | MEDLINE | ID: mdl-27439479

ABSTRACT

Tumor survival, metastases, chemoresistance, and escape from immune responses have been associated with inappropriate activation of STAT3 and/or STAT5 in various cancers, including solid tumors. Debio 0617B has been developed as a first-in-class kinase inhibitor with a unique profile targeting phospho-STAT3 (pSTAT3) and/or pSTAT5 in tumors through combined inhibition of JAK, SRC, ABL, and class III/V receptor tyrosine kinases (RTK). Debio 0617B showed dose-dependent inhibition of pSTAT3 in STAT3-activated carcinoma cell lines; Debio 0617B also showed potent antiproliferative activity in a panel of cancer cell lines and in patient-derived tumor xenografts tested in an in vitro clonogenic assay. Debio 0617B showed in vivo efficacy by inhibiting tumor growth in several mouse xenograft models. To increase in vivo efficacy and STAT3 inhibition, Debio 0617B was tested in combination with the EGFR inhibitor erlotinib in a non-small cell lung cancer xenograft model. To evaluate the impact of in vivo STAT3 blockade on metastases, Debio 0617B was tested in an orthotopic tumor model. Measurement of primary tumor weight and metastatic counts in lung tissue demonstrated therapeutic efficacy of Debio 0617B in this model. These data show potent activity of Debio 0617B on a broad spectrum of STAT3-driven solid tumors and synergistic activity in combination with EGFR inhibition. Mol Cancer Ther; 15(10); 2334-43. ©2016 AACR.


Subject(s)
Antineoplastic Agents/pharmacology , Janus Kinases/antagonists & inhibitors , Neoplasms/metabolism , Protein Kinase Inhibitors/pharmacology , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , STAT3 Transcription Factor/metabolism , src-Family Kinases/antagonists & inhibitors , Animals , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Disease Models, Animal , Drug Design , Humans , Janus Kinases/chemistry , Mice , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , Neoplasm Metastasis , Neoplasms/drug therapy , Neoplasms/pathology , Protein Kinase Inhibitors/chemistry , Receptor Protein-Tyrosine Kinases/chemistry , Signal Transduction/drug effects , Tumor Burden/drug effects , Xenograft Model Antitumor Assays , src-Family Kinases/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...