Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
2.
J Med Chem ; 66(15): 10617-10627, 2023 08 10.
Article in English | MEDLINE | ID: mdl-37467168

ABSTRACT

High hit rates from initial ligand-observed NMR screening can make it challenging to prioritize which hits to follow up, especially in cases where there are no available crystal structures of these hits bound to the target proteins or other strategies to provide affinity ranking. Here, we report a reproducible, accurate, and versatile quantitative ligand-observed NMR assay, which can determine Kd values of fragments in the affinity range of low µM to low mM using transverse relaxation rate R2 as the observable parameter. In this study, we examined the theory and proposed a mathematical formulation to obtain Kd values using non-linear regression analysis. We designed an assay format with automated sample preparation and simplified data analysis. Using tool compounds, we explored the assay reproducibility, accuracy, and detection limits. Finally, we used this assay to triage fragment hits, yielded from fragment screening against the CRBN/DDB1 complex.


Subject(s)
Drug Discovery , Small Molecule Libraries , Ligands , Reproducibility of Results , Proton Magnetic Resonance Spectroscopy , Small Molecule Libraries/chemistry , Protein Binding
3.
Chembiochem ; 24(23): e202300351, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37418539

ABSTRACT

Small molecules inducing protein degradation are important pharmacological tools to interrogate complex biology and are rapidly translating into clinical agents. However, to fully realise the potential of these molecules, selectivity remains a limiting challenge. Herein, we addressed the issue of selectivity in the design of CRL4CRBN recruiting PROteolysis TArgeting Chimeras (PROTACs). Thalidomide derivatives used to generate CRL4CRBN recruiting PROTACs have well described intrinsic monovalent degradation profiles by inducing the recruitment of neo-substrates, such as GSPT1, Ikaros and Aiolos. We leveraged structural insights from known CRL4CRBN neo-substrates to attenuate and indeed remove this monovalent degradation function in well-known CRL4CRBN molecular glues degraders, namely CC-885 and Pomalidomide. We then applied these design principles on a previously published BRD9 PROTAC (dBRD9-A) and generated an analogue with improved selectivity profile. Finally, we implemented a computational modelling pipeline to show that our degron blocking design does not impact PROTAC-induced ternary complex formation. We believe that the tools and principles presented in this work will be valuable to support the development of targeted protein degradation.


Subject(s)
Ubiquitin-Protein Ligases , Ubiquitin-Protein Ligases/metabolism , Proteolysis
4.
iScience ; 26(7): 107059, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37360684

ABSTRACT

To address the limitation associated with degron based systems, we have developed iTAG, a synthetic tag based on IMiDs/CELMoDs mechanism of action that improves and addresses the limitations of both PROTAC and previous IMiDs/CeLMoDs based tags. Using structural and sequence analysis, we systematically explored native and chimeric degron containing domains (DCDs) and evaluated their ability to induce degradation. We identified the optimal chimeric iTAG(DCD23 60aa) that elicits robust degradation of targets across cell types and subcellular localizations without exhibiting the well documented "hook effect" of PROTAC-based systems. We showed that iTAG can also induce target degradation by murine CRBN and enabled the exploration of natural neo-substrates that can be degraded by murine CRBN. Hence, the iTAG system constitutes a versatile tool to degrade targets across the human and murine proteome.

5.
J Med Chem ; 66(4): 2622-2645, 2023 02 23.
Article in English | MEDLINE | ID: mdl-36749938

ABSTRACT

The existence of multiple centrosomes in some cancer cells can lead to cell death through the formation of multipolar mitotic spindles and consequent aberrant cell division. Many cancer cells rely on HSET (KIFC1) to cluster the extra centrosomes into two groups to mimic the bipolar spindle formation of non-centrosome-amplified cells and ensure their survival. Here, we report the discovery of a novel 2-(3-benzamidopropanamido)thiazole-5-carboxylate with micromolar in vitro inhibition of HSET (KIFC1) through high-throughput screening and its progression to ATP-competitive compounds with nanomolar biochemical potency and high selectivity against the opposing mitotic kinesin Eg5. Induction of the multipolar phenotype was shown in centrosome-amplified human cancer cells treated with these inhibitors. In addition, a suitable linker position was identified to allow the synthesis of both fluorescent- and trans-cyclooctene (TCO)-tagged probes, which demonstrated direct compound binding to the HSET protein and confirmed target engagement in cells, through a click-chemistry approach.


Subject(s)
Kinesins , Thiazoles , Humans , Cell Line, Tumor , Centrosome/metabolism , Kinesins/antagonists & inhibitors , Kinesins/genetics , Kinesins/metabolism , Mitosis , Spindle Apparatus/metabolism , Thiazoles/chemistry , Thiazoles/pharmacology
6.
Sci Rep ; 12(1): 18633, 2022 11 03.
Article in English | MEDLINE | ID: mdl-36329085

ABSTRACT

By suppressing gene transcription through the recruitment of corepressor proteins, B-cell lymphoma 6 (BCL6) protein controls a transcriptional network required for the formation and maintenance of B-cell germinal centres. As BCL6 deregulation is implicated in the development of Diffuse Large B-Cell Lymphoma, we sought to discover novel small molecule inhibitors that disrupt the BCL6-corepressor protein-protein interaction (PPI). Here we report our hit finding and compound optimisation strategies, which provide insight into the multi-faceted orthogonal approaches that are needed to tackle this challenging PPI with small molecule inhibitors. Using a 1536-well plate fluorescence polarisation high throughput screen we identified multiple hit series, which were followed up by hit confirmation using a thermal shift assay, surface plasmon resonance and ligand-observed NMR. We determined X-ray structures of BCL6 bound to compounds from nine different series, enabling a structure-based drug design approach to improve their weak biochemical potency. We developed a time-resolved fluorescence energy transfer biochemical assay and a nano bioluminescence resonance energy transfer cellular assay to monitor cellular activity during compound optimisation. This workflow led to the discovery of novel inhibitors with respective biochemical and cellular potencies (IC50s) in the sub-micromolar and low micromolar range.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Humans , Crystallography, X-Ray , Proto-Oncogene Proteins c-bcl-6/metabolism , Lymphoma, Large B-Cell, Diffuse/pathology , Drug Design , Ligands
7.
J Med Chem ; 65(12): 8169-8190, 2022 06 23.
Article in English | MEDLINE | ID: mdl-35657291

ABSTRACT

To identify new chemical series with enhanced binding affinity to the BTB domain of B-cell lymphoma 6 protein, we targeted a subpocket adjacent to Val18. With no opportunities for strong polar interactions, we focused on attaining close shape complementarity by ring fusion onto our quinolinone lead series. Following exploration of different sized rings, we identified a conformationally restricted core which optimally filled the available space, leading to potent BCL6 inhibitors. Through X-ray structure-guided design, combined with efficient synthetic chemistry to make the resulting novel core structures, a >300-fold improvement in activity was obtained by the addition of seven heavy atoms.


Subject(s)
BTB-POZ Domain , Protein Binding , Proto-Oncogene Proteins c-bcl-6
8.
J Med Chem ; 64(23): 17079-17097, 2021 12 09.
Article in English | MEDLINE | ID: mdl-34846884

ABSTRACT

We describe the optimization of modestly active starting points to potent inhibitors of BCL6 by growing into a subpocket, which was occupied by a network of five stably bound water molecules. Identifying potent inhibitors required not only forming new interactions in the subpocket but also perturbing the water network in a productive, potency-increasing fashion while controlling the physicochemical properties. We achieved this goal in a sequential manner by systematically probing the pocket and the water network, ultimately achieving a 100-fold improvement of activity. The most potent compounds displaced three of the five initial water molecules and formed hydrogen bonds with the remaining two. Compound 25 showed a promising profile for a lead compound with submicromolar inhibition of BCL6 in cells and satisfactory pharmacokinetic (PK) properties. Our work highlights the importance of finding productive ways to perturb existing water networks when growing into solvent-filled protein pockets.


Subject(s)
Antineoplastic Agents/pharmacology , Proto-Oncogene Proteins c-bcl-6/antagonists & inhibitors , Antineoplastic Agents/chemistry , Crystallography, X-Ray , Drug Design , Humans , Hydrogen Bonding , Solubility , Structure-Activity Relationship
9.
J Med Chem ; 63(8): 4047-4068, 2020 04 23.
Article in English | MEDLINE | ID: mdl-32275432

ABSTRACT

Deregulation of the transcriptional repressor BCL6 enables tumorigenesis of germinal center B-cells, and hence BCL6 has been proposed as a therapeutic target for the treatment of diffuse large B-cell lymphoma (DLBCL). Herein we report the discovery of a series of benzimidazolone inhibitors of the protein-protein interaction between BCL6 and its co-repressors. A subset of these inhibitors were found to cause rapid degradation of BCL6, and optimization of pharmacokinetic properties led to the discovery of 5-((5-chloro-2-((3R,5S)-4,4-difluoro-3,5-dimethylpiperidin-1-yl)pyrimidin-4-yl)amino)-3-(3-hydroxy-3-methylbutyl)-1-methyl-1,3-dihydro-2H-benzo[d]imidazol-2-one (CCT369260), which reduces BCL6 levels in a lymphoma xenograft mouse model following oral dosing.


Subject(s)
Benzimidazoles/administration & dosage , Benzimidazoles/chemistry , Drug Delivery Systems/methods , Drug Discovery/methods , Proto-Oncogene Proteins c-bcl-6/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-6/metabolism , Animals , Cell Line, Tumor , Female , Humans , Male , Mice , Mice, Inbred BALB C , Mice, SCID , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Protein Structure, Tertiary , Rats , Rats, Sprague-Dawley , Xenograft Model Antitumor Assays/methods
10.
J Med Chem ; 61(3): 918-933, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29240418

ABSTRACT

Demonstrating intracellular protein target engagement is an essential step in the development and progression of new chemical probes and potential small molecule therapeutics. However, this can be particularly challenging for poorly studied and noncatalytic proteins, as robust proximal biomarkers are rarely known. To confirm that our recently discovered chemical probe 1 (CCT251236) binds the putative transcription factor regulator pirin in living cells, we developed a heterobifunctional protein degradation probe. Focusing on linker design and physicochemical properties, we generated a highly active probe 16 (CCT367766) in only three iterations, validating our efficient strategy for degradation probe design against nonvalidated protein targets.


Subject(s)
Prion Proteins/metabolism , Proteolysis/drug effects , Cell Line , Cell Survival , Models, Molecular , Protein Conformation
11.
Oncotarget ; 6(15): 13019-35, 2015 May 30.
Article in English | MEDLINE | ID: mdl-25968568

ABSTRACT

IRE1 transduces the unfolded protein response by splicing XBP1 through its C-terminal cytoplasmic kinase-RNase region. IRE1 autophosphorylation is coupled to RNase activity through formation of a back-to-back dimer, although the conservation of the underlying molecular mechanism is not clear from existing structures. We have crystallized human IRE1 in a back-to-back conformation only previously seen for the yeast homologue. In our structure the kinase domain appears primed for catalysis but the RNase domains are disengaged. Structure-function analysis reveals that IRE1 is autoinhibited through a Tyr-down mechanism related to that found in the unrelated Ser/Thr protein kinase Nek7. We have developed a compound that potently inhibits human IRE1 kinase activity while stimulating XBP1 splicing. A crystal structure of the inhibitor bound to IRE1 shows an increased ordering of the kinase activation loop. The structures of hIRE in apo and ligand-bound forms are consistent with a previously proposed model of IRE1 regulation in which formation of a back-to-back dimer coupled to adoption of a kinase-active conformation drive RNase activation. The structures provide opportunities for structure-guided design of IRE1 inhibitors.


Subject(s)
Endoribonucleases/chemistry , Endoribonucleases/metabolism , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , Drug Discovery , Endoribonucleases/antagonists & inhibitors , Endoribonucleases/genetics , Humans , Ligands , Models, Molecular , Phosphorylation , Protein Conformation , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Multimerization , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Ribonucleases/genetics , Ribonucleases/metabolism , Structure-Activity Relationship , Transfection
12.
Oncotarget ; 4(10): 1647-61, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24072592

ABSTRACT

The ribosomal P70 S6 kinases play a crucial role in PI3K/mTOR regulated signalling pathways and are therefore potential targets for the treatment of a variety of diseases including diabetes and cancer. In this study we describe the identification of three series of chemically distinct S6K1 inhibitors. In addition, we report a novel PKA-S6K1 chimeric protein with five mutations in or near its ATP-binding site, which was used to determine the binding mode of two of the three inhibitor series, and provided a robust system to aid the optimisation of the oxadiazole-substituted benzimidazole inhibitor series. We show that the resulting oxadiazole-substituted aza-benzimidazole is a potent and ligand efficient S6 kinase inhibitor, which blocks the phosphorylation of RPS6 at Ser235/236 in TSC negative HCV29 human bladder cancer cells by inhibiting S6 kinase activity and thus provides a useful tool compound to investigate the function of S6 kinases.


Subject(s)
Protein Kinase Inhibitors/pharmacology , Ribosomal Protein S6 Kinases, 90-kDa/antagonists & inhibitors , Cell Line, Tumor , Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors , Cyclic AMP-Dependent Protein Kinases/metabolism , Drug Design , High-Throughput Screening Assays/methods , Humans , Imidazoles/chemistry , Imidazoles/pharmacology , Models, Molecular , Phosphorylation , Protein Kinase Inhibitors/chemistry , Recombinant Fusion Proteins/chemistry , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Signal Transduction , Structure-Activity Relationship , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/enzymology
13.
J Biomol Screen ; 18(3): 298-308, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23139381

ABSTRACT

Inositol-requiring enzyme 1 alpha (IRE1α) is a transmembrane sensor protein with both kinase and ribonuclease activity, which plays a crucial role in the unfolded protein response (UPR). Protein misfolding in the endoplasmic reticulum (ER) lumen triggers dimerization and subsequent trans-autophosphorylation of IRE1α. This leads to the activation of its endoribonuclease (RNase) domain and splicing of the mRNA of the transcriptional activator XBP1, ultimately generating an active XBP1 (XBP1s) implicated in multiple myeloma survival. Previously, we have identified human IRE1α as a target for the development of kinase inhibitors that could modulate the UPR in human cells, which has particular relevance for multiple myeloma and other secretory malignancies. Here we describe the development and validation of a 384-well high-throughput screening assay using DELFIA technology that is specific for IRE1α autophosphorylation. Using this format, a focused library of 2312 potential kinase inhibitors was screened, and several novel IRE1α kinase inhibitor scaffolds were identified that could potentially be developed toward new therapies to treat multiple myeloma.


Subject(s)
Endoribonucleases/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Animals , Cell Line , Endoribonucleases/chemistry , Endoribonucleases/metabolism , High-Throughput Screening Assays/methods , Humans , Insecta , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/metabolism , Multiple Myeloma/drug therapy , Multiple Myeloma/enzymology , Multiple Myeloma/metabolism , Phosphorylation/drug effects , Protein Folding/drug effects , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , Unfolded Protein Response/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL