Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Nat Genet ; 53(9): 1311-1321, 2021 09.
Article in English | MEDLINE | ID: mdl-34493871

ABSTRACT

Characterizing genetic influences on DNA methylation (DNAm) provides an opportunity to understand mechanisms underpinning gene regulation and disease. In the present study, we describe results of DNAm quantitative trait locus (mQTL) analyses on 32,851 participants, identifying genetic variants associated with DNAm at 420,509 DNAm sites in blood. We present a database of >270,000 independent mQTLs, of which 8.5% comprise long-range (trans) associations. Identified mQTL associations explain 15-17% of the additive genetic variance of DNAm. We show that the genetic architecture of DNAm levels is highly polygenic. Using shared genetic control between distal DNAm sites, we constructed networks, identifying 405 discrete genomic communities enriched for genomic annotations and complex traits. Shared genetic variants are associated with both DNAm levels and complex diseases, but only in a minority of cases do these associations reflect causal relationships from DNAm to trait or vice versa, indicating a more complex genotype-phenotype map than previously anticipated.


Subject(s)
DNA Methylation/genetics , DNA/metabolism , Gene Expression Regulation/genetics , Genetic Predisposition to Disease/genetics , Quantitative Trait Loci/genetics , Chromosome Mapping , Epigenesis, Genetic/genetics , Genome-Wide Association Study , Humans , Multifactorial Inheritance/genetics , Polymorphism, Single Nucleotide/genetics , Quantitative Trait, Heritable , Transcriptome/genetics
2.
Oral Oncol ; 85: 87-94, 2018 10.
Article in English | MEDLINE | ID: mdl-30220325

ABSTRACT

OBJECTIVES: Head and neck squamous cell carcinoma (HNSCC) is often associated with chronic systemic inflammation (SI). In the present study, we assessed if DNA methylation-derived SI (mdSI) indices: Neutrophil-to-Lymphocyte ratio (mdNLR) and Lymphocyte-to-Monocyte ratio (mdLMR) are associated with the presence of HNSCC and overall survival (OS). MATERIALS AND METHODS: We used two peripheral blood DNA methylation datasets: an HNSCC case-control dataset (n = 183) and an HNSCC survival dataset (n = 407) to estimate mdSI indices. We then performed multivariate regressions to test the association between mdSI indices, HNSCC development and OS. RESULTS: Multivariate logistic regression revealed that elevated mdNLR was associated with increased odds of being an HNSCC case (OR = 3.25, 95% CI = 2.14-5.34, P = 4 × 10-7) while the converse was observed for mdLMR (OR = 0.88, 95% CI = 0.81-0.90, P = 2 × 10-3). In the HNSCC survival dataset, HPV16-E6 seropositive HNSCC cases had an elevated mdLMR (P = 9 × 10-5) and a lower mdNLR (P = 0.003) compared to seronegative patients. Multivariate Cox regression in the HNSCC survival dataset revealed that lower mdLMR (HR = 1.96, 95% CI = 1.30-2.95, P = 0.0013) but not lower mdNLR (HR = 0.68, 95% CI = 0.46-1.00, P = 0.0501) was associated with increased risk of death. CONCLUSION: Our results indicate that mdSI estimated by DNA methylation data is associated with the presence of HNSCC and overall survival. The mdSI indices may be used as a valuable research tool to reliably estimate SI in the absence of cell-based estimates. Rigorous validation of our findings in large prospective studies is warranted in the future.


Subject(s)
DNA Methylation , Head and Neck Neoplasms/genetics , Inflammation/genetics , Squamous Cell Carcinoma of Head and Neck/genetics , Adult , Aged , Aged, 80 and over , Alcohol Drinking/epidemiology , Antibodies, Viral/blood , Biomarkers, Tumor , C-Reactive Protein/analysis , Case-Control Studies , Comorbidity , CpG Islands , Datasets as Topic/statistics & numerical data , Female , Head and Neck Neoplasms/blood , Head and Neck Neoplasms/mortality , Head and Neck Neoplasms/virology , Human papillomavirus 16/immunology , Human papillomavirus 16/isolation & purification , Humans , Kaplan-Meier Estimate , Leukocyte Count , Male , Middle Aged , Odds Ratio , Oncogene Proteins, Viral/immunology , Papillomavirus Infections/blood , Papillomavirus Infections/genetics , Papillomavirus Infections/mortality , Proportional Hazards Models , Repressor Proteins/immunology , Smoking/epidemiology , Squamous Cell Carcinoma of Head and Neck/blood , Squamous Cell Carcinoma of Head and Neck/mortality , Squamous Cell Carcinoma of Head and Neck/virology
3.
Dev Psychopathol ; 30(3): 1145-1156, 2018 08.
Article in English | MEDLINE | ID: mdl-30068408

ABSTRACT

In 785 mother-child (50% male) pairs from a longitudinal epidemiological birth cohort, we investigated associations between inflammation-related epigenetic polygenic risk scores (i-ePGS), environmental exposures, cognitive function, and child and adolescent internalizing and externalizing problems. We examined prenatal and postnatal effects. For externalizing problems, one prenatal effect was found: i-ePGS at birth associated with higher externalizing problems (ages 7-15) indirectly through lower cognitive function (age 7). For internalizing problems, we identified two effects. For a prenatal effect, i-ePGS at birth associated with higher internalizing symptoms via continuity in i-ePGS at age 7. For a postnatal effect, higher postnatal adversity exposure (birth through age 7) associated with higher internalizing problems (ages 7-15) via higher i-ePGS (age 7). Hence, externalizing problems were related mainly to prenatal effects involving lower cognitive function, whereas internalizing problems appeared related to both prenatal and postnatal effects. The present study supports a link between i-ePGS and child and adolescent mental health.


Subject(s)
Child Behavior Disorders/etiology , Inflammation/complications , Mental Health , Adolescent , Child , Female , Humans , Male , Pregnancy , Prospective Studies , Risk Factors
4.
J Autoimmun ; 93: 66-75, 2018 09.
Article in English | MEDLINE | ID: mdl-30146008

ABSTRACT

The risk of Type 1 Diabetes (T1D) comprises both genetic and environmental components. We investigated whether genetic susceptibility to T1D could be mediated by changes in DNA methylation, an epigenetic mechanism that potentially plays a role in autoimmune diabetes. From enrichment analysis, we found that there was a common genetic influence for both DNA methylation and T1D across the genome, implying that methylation could be either on the causal pathway to T1D or a non-causal biomarker of T1D genetic risk. Using data from a general population comprising blood samples taken at birth (n = 844), childhood (n = 846) and adolescence (n = 907), we then evaluated the associations between 64 top GWAS single nucleotide polymorphisms (SNPs) and DNA methylation levels at 55 non-HLA loci. We identified 95 proximal SNP-cytosine phosphate guanine (CpG) pairs (cis) and 1 distal SNP-CpG association (trans) consistently at birth, childhood, and adolescence. Combining genetic co-localization and Mendelian Randomization analysis, we provided evidence that at 5 loci, ITGB3BP, AFF3, PTPN2, CTSH and CTLA4, DNA methylation is potentially mediating the genetic risk of T1D mainly by influencing local gene expression.


Subject(s)
CpG Islands , Diabetes Mellitus, Type 1/genetics , Epigenesis, Genetic , Genome, Human , Quantitative Trait Loci , Adolescent , Adult , Aged , CTLA-4 Antigen/genetics , Cathepsin H/genetics , Child , DNA Methylation , Diabetes Mellitus, Type 1/pathology , Female , Genome-Wide Association Study , Humans , Infant, Newborn , Longitudinal Studies , Male , Mendelian Randomization Analysis , Middle Aged , Nuclear Proteins/genetics , Polymorphism, Single Nucleotide , Prospective Studies , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , Risk Factors
5.
Int J Epidemiol ; 47(3): 928-937, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29546377

ABSTRACT

BACKGROUND: It has been proposed that maternal folic-acid supplement use may alter the DNA-methylation patterns of the offspring during the in-utero period, which could influence development and later-life health outcomes. Evidence from human studies suggests a role for prenatal folate levels in influencing DNA methylation in early life, but this has not been extended to consider persistent effects into adulthood. METHODS: To better elucidate the long-term impact of maternal folic acid in pregnancy on DNA methylation in offspring, we carried out an epigenome-wide association study (EWAS) nested within the Aberdeen Folic Acid Supplementation Trial (AFAST-a trial of two different doses: 0.2 and 5 mg, folic acid vs placebo). Offspring of the AFAST participants were recruited at a mean age of 47 years and saliva samples were profiled on the Illumina Infinium Human Methylation450 array. Both single-site and differentially methylated region analyses were performed. RESULTS: We found an association at cg09112514 (p = 4.03×10-9), a CpG located in the 5' untranslated region of PDGFRA, in the main analysis comparing the intervention arms [low- (0.2 mg) and high-dose (5 mg) folic acid combined (N = 43)] vs placebo (N = 43). Furthermore, a dose-response reduction in methylation at this site was identified in relation to the intervention. In the regional approach, we identified 46 regions of the genome that were differentially methylated in response to the intervention (Sidak p-value <0.05), including HLA-DPB2, HLA-DPB1, PAX8 and VTRNA2-1. Whereas cg09112514 did not replicate in an independent EWAS of maternal plasma folate, there was suggested replication of differential methylation in PAX8. CONCLUSIONS: The results of this study suggest that maternal folic-acid supplement use is associated with changes in the DNA methylation of the offspring that persist for many years after exposure in utero. These methylation changes are located in genes implicated in embryonic development, immune response and cellular proliferation. Further work to investigate whether these epigenetic changes translate into detectable phenotypic differences is required.

6.
Child Dev ; 89(5): 1839-1855, 2018 09.
Article in English | MEDLINE | ID: mdl-28929496

ABSTRACT

In 671 mother-child (49% male) pairs from an epidemiological birth cohort, we investigated (a) prospective associations between DNA methylation (at birth) and trajectories (ages 7-13) of oppositional defiant disorder (ODD), and the ODD subdimensions of irritable and headstrong; (b) common biological pathways, indexed by DNA methylation, between ODD trajectories and attention deficit hyperactivity disorder (ADHD); (c) genetic influence on DNA methylation; and (d) prenatal risk exposure associations. Methylome-wide significant associations were identified for the ODD and headstrong, but not for irritable. Overlap analysis indicated biological correlates between ODD, headstrong, and ADHD. DNA methylation in ODD and headstrong was (to a degree) genetically influenced. DNA methylation associated with prenatal risk exposures of maternal anxiety (headstrong) and cigarette smoking (ODD and headstrong).


Subject(s)
Attention Deficit Disorder with Hyperactivity/genetics , Attention Deficit and Disruptive Behavior Disorders/genetics , DNA Methylation , Adolescent , Attention Deficit Disorder with Hyperactivity/complications , Attention Deficit and Disruptive Behavior Disorders/complications , Attention Deficit and Disruptive Behavior Disorders/psychology , Child , Cohort Studies , Female , Humans , Irritable Mood , Male , Symptom Assessment
7.
Mitochondrion ; 39: 9-19, 2018 03.
Article in English | MEDLINE | ID: mdl-28818596

ABSTRACT

The mitochondrial genome is present at variable copy number between individuals. Mitochondria are vulnerable to oxidative stress, and their dysfunction may be associated with cardiovascular disease. The association of mitochondrial DNA copy number with cardiometabolic risk factors (lipids, glycaemic traits, inflammatory markers, anthropometry and blood pressure) was assessed in two independent cohorts of European origin women, one in whom outcomes were measured at mean (SD) age 30 (4.3) years (N=2278) and the second at 69.4 (5.5) years (N=2872). Mitochondrial DNA copy number was assayed by quantitative polymerase chain reaction. Associations were adjusted for smoking, sociodemographic status, laboratory factors and white cell traits. Out of a total of 12 outcomes assessed in both cohorts, mitochondrial DNA copy number showed little or no association with the majority (point estimates were close to zero and nearly all p-values were >0.01). The strongest evidence was for an inverse association in the older cohort with insulin (standardised beta [95%CI]: -0.06, [-0.098, -0.022], p=0.002), but this association did not replicate in the younger cohort. Our findings do not provide support for variation in mitochondrial DNA copy number having an important impact on cardio-metabolic risk factors in European origin women.


Subject(s)
Cardiovascular Diseases/genetics , DNA Copy Number Variations , DNA, Mitochondrial/analysis , Metabolic Diseases/genetics , Adult , Aged , Cardiovascular Diseases/epidemiology , Female , Humans , Metabolic Diseases/epidemiology , Middle Aged , United Kingdom/epidemiology
8.
Dev Psychopathol ; 30(2): 383-397, 2018 05.
Article in English | MEDLINE | ID: mdl-28595673

ABSTRACT

Early-onset conduct problems (CP) are a key predictor of adult criminality and poor mental health. While previous studies suggest that both genetic and environmental risks play an important role in the development of early-onset CP, little is known about potential biological processes underlying these associations. In this study, we examined prospective associations between DNA methylation (cord blood at birth) and trajectories of CP (4-13 years), using data drawn from the Avon Longitudinal Study of Parents and Children. Methylomic variation at seven loci across the genome (false discovery rate < 0.05) differentiated children who go on to develop early-onset (n = 174) versus low (n = 86) CP, including sites in the vicinity of the monoglyceride lipase (MGLL) gene (involved in endocannabinoid signaling and pain perception). Subthreshold associations in the vicinity of three candidate genes for CP (monoamine oxidase A [MAOA], brain-derived neurotrophic factor [BDNF], and FK506 binding protein 5 [FKBP5]) were also identified. Within the early-onset CP group, methylation levels of the identified sites did not distinguish children who will go on to persist versus desist in CP behavior over time. Overall, we found that several of the identified sites correlated with prenatal exposures, and none were linked to known genetic methylation quantitative trait loci. Findings contribute to a better understanding of epigenetic patterns associated with early-onset CP.


Subject(s)
Conduct Disorder/genetics , DNA Methylation/genetics , Epigenesis, Genetic/genetics , Fetal Blood/metabolism , Genome-Wide Association Study , Adolescent , Age of Onset , Child , Child, Preschool , Female , Humans , Infant, Newborn , Longitudinal Studies , Male
9.
Dev Psychopathol ; 29(5): 1663-1674, 2017 12.
Article in English | MEDLINE | ID: mdl-29162179

ABSTRACT

Emerging research in epigenetics has shown that there is variability in how environmental exposures "get under the skin" through mechanisms like DNA methylation to influence gene expression that may lead to differential adaptations to stress. This is the first study to examine prospectively the relationship between DNA methylation at birth and resilience to prenatal environmental stressors in several domains (conduct, hyperactivity, emotional problems, and global symptomatology) in middle childhood. We focused on DNA methylation in the vicinity of the oxytocin receptor (OXTR) gene as it has been previously associated with impairments in social-cognitive processes that may underlie a wide range of childhood psychopathology. Participants were 91 youth exposed to pre- and postnatal adversity with established conduct problem trajectories drawn from the Avon Longitudinal Study of Parents and Children. Consistent with our hypothesis, OXTR DNA methylation was predictive of resilience in the conduct problems domain in middle childhood. DNA methylation profiles did not predict resilience in domains of emotional, hyperactivity, and global symptomatology, suggesting a potential role for OXTR in the development of conduct problems in particular. However, individuals who were resilient to conduct problems were also broadly resilient across multiple domains. Therefore, future research should elucidate the biological pathways between OXTR DNA methylation and gene expression and its relation to impairments in social behavior.


Subject(s)
DNA Methylation , Prenatal Exposure Delayed Effects/genetics , Receptors, Oxytocin/genetics , Resilience, Psychological , Stress, Psychological/genetics , Adolescent , Child , Child, Preschool , Emotions/physiology , Female , Humans , Longitudinal Studies , Male , Pregnancy , Prenatal Exposure Delayed Effects/psychology , Social Behavior , Stress, Psychological/psychology
10.
Clin Epigenetics ; 9: 63, 2017.
Article in English | MEDLINE | ID: mdl-28603561

ABSTRACT

BACKGROUND: Epigenetic data could help identify risk factors for orofacial clefts, either by revealing a causal role for epigenetic mechanisms in causing clefts or by capturing information about causal genetic or environmental factors. Given the evidence that different subtypes of orofacial cleft have distinct aetiologies, we explored whether children with different cleft subtypes showed distinct epigenetic profiles. METHODS: In whole-blood samples from 150 children from the Cleft Collective cohort study, we measured DNA methylation at over 450,000 sites on the genome. We then carried out epigenome-wide association studies (EWAS) to test the association between methylation at each site and cleft subtype (cleft lip only (CLO) n = 50; cleft palate only (CPO) n = 50; cleft lip and palate (CLP) n = 50). We also compared methylation in the blood to methylation in the lip or palate tissue using genome-wide data from the same 150 children and conducted an EWAS of CLO compared to CLP in lip tissue. RESULTS: We found four genomic regions in blood differentially methylated in CLO compared to CLP, 17 in CPO compared to CLP and 294 in CPO compared to CLO. Several regions mapped to genes that have previously been implicated in the development of orofacial clefts (for example, TBX1, COL11A2, HOXA2, PDGFRA), and over 250 associations were novel. Methylation in blood correlated with that in lip/palate at some regions. There were 14 regions differentially methylated in the lip tissue from children with CLO and CLP, with one region (near KIAA0415) showing up in both the blood and lip EWAS. CONCLUSIONS: Our finding of distinct methylation profiles in different orofacial cleft (OFC) subtypes represents a promising first step in exploring the potential role of epigenetic modifications in the aetiology of OFCs and/or as clinically useful biomarkers of OFC subtypes.


Subject(s)
Cleft Lip/genetics , Cleft Palate/genetics , DNA Methylation , Epigenomics/methods , Cohort Studies , Female , Gene Regulatory Networks , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Infant , Male
11.
Int J Epidemiol ; 46(2): 549-558, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28089957

ABSTRACT

Background: Statistical models that use an individual's DNA methylation levels to estimate their age (known as epigenetic clocks) have recently been developed, with 96% correlation found between epigenetic and chronological age. We postulate that differences between estimated and actual age [age acceleration (AA)] can be used as a measure of developmental age in early life. Methods: We obtained DNA methylation measures at three time points (birth, age 7 years and age 17 years) in 1018 children from the Avon Longitudinal Study of Parents and Children (ALSPAC). Using an online calculator, we estimated epigenetic age, and thus AA, for each child at each time point. We then investigated whether AA was prospectively associated with repeated measures of height, weight, body mass index (BMI), bone mineral density, bone mass, fat mass, lean mass and Tanner stage. Results: Positive AA at birth was associated with higher average fat mass [1321 g per year of AA, 95% confidence interval (CI) 386, 2256 g] from birth to adolescence (i.e. from age 0-17 years) and AA at age 7 was associated with higher average height (0.23 cm per year of AA, 95% CI 0.04, 0.41 cm). Conflicting evidence for the role of AA (at birth and in childhood) on changes during development was also found, with higher AA being positively associated with changes in weight, BMI and Tanner stage, but negatively with changes in height and fat mass. Conclusions: We found evidence that being ahead of one's epigenetic age acceleration is related to developmental characteristics during childhood and adolescence. This demonstrates the potential for using AA as a measure of development in future research.


Subject(s)
Body Mass Index , Body Size , Bone Density , DNA Methylation , Epigenesis, Genetic , Adolescent , Birth Weight , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Linear Models , Longitudinal Studies , Male , Models, Statistical , United Kingdom
12.
Ann Clin Biochem ; 54(4): 472-480, 2017 Jul.
Article in English | MEDLINE | ID: mdl-27555663

ABSTRACT

Background One of the kallikrein genes ( KLK3) encodes prostate-specific antigen, a key biomarker for prostate cancer. A number of factors, both genetic and non-genetic, determine variation of serum prostate-specific antigen concentrations in the population. We have recently found three KLK3 deletions in individuals with very low prostate-specific antigen concentrations, suggesting a link between abnormally reduced KLK3 expression and deletions of KLK3. Here, we aim to determine the frequency of kallikrein gene 3 deletions in the general population. Methods The frequency of KLK3 deletions in the general population was estimated from the 1958 Birth Cohort sample ( n = 3815) using amplification ratiometry control system. In silico analyses using PennCNV were carried out in the same cohort and in NBS-WTCCC2 in order to provide an independent estimation of the frequency of KLK3 deletions in the general population. Results Amplification ratiometry control system results from the 1958 cohort indicated a frequency of KLK3 deletions of 0.81% (3.98% following a less stringent calling criterion). From in silico analyses, we found that potential deletions harbouring the KLK3 gene occurred at rates of 2.13% (1958 Cohort, n = 2867) and 0.99% (NBS-WTCCC2, n = 2737), respectively. These results are in good agreement with our in vitro experiments. All deletions found were in heterozygosis. Conclusions We conclude that a number of individuals from the general population present KLK3 deletions in heterozygosis. Further studies are required in order to know if interpretation of low serum prostate-specific antigen concentrations in individuals with KLK3 deletions may offer false-negative assurances with consequences for prostate cancer screening, diagnosis and monitoring.


Subject(s)
Biomarkers, Tumor/genetics , Kallikreins/genetics , Mutation Rate , Prostate-Specific Antigen/genetics , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/genetics , Cohort Studies , False Negative Reactions , Gene Deletion , Gene Expression , Heterozygote , Humans , Kallikreins/deficiency , Male , Middle Aged , Monitoring, Physiologic , Prognosis , Prostate-Specific Antigen/deficiency , Prostatic Neoplasms/pathology
13.
J Child Psychol Psychiatry ; 58(1): 19-27, 2017 01.
Article in English | MEDLINE | ID: mdl-27535767

ABSTRACT

BACKGROUND: Conduct problems (CP) and attention deficit hyperactivity disorder (ADHD) are often comorbid and have each been linked to 'unhealthy diet'. Early-life diet also associates with DNA methylation of the insulin-like growth factor 2 gene (IGF2), involved in fetal and neural development. We investigated the degree to which prenatal high-fat and -sugar diet might relate to ADHD symptoms via IGF2 DNA methylation for early-onset persistent (EOP) versus low CP youth. METHODS: Participants were 164 youth with EOP (n = 83) versus low (n = 81) CP drawn from the Avon Longitudinal Study of Parents and Children. We assessed if the interrelationships between high-fat and -sugar diet (prenatal, postnatal), IGF2 methylation (birth and age 7, collected from blood), and ADHD symptoms (age 7-13) differed for EOP versus low CP youth. RESULTS: Prenatal 'unhealthy diet' was positively associated with IGF2 methylation at birth for both the EOP and low CP youth. For EOP only: (a) higher IGF2 methylation predicted ADHD symptoms; and (b) prenatal 'unhealthy diet' was associated with higher ADHD symptoms indirectly via higher IGF2 methylation. CONCLUSIONS: Preventing 'unhealthy diet' in pregnancy might reduce the risk of ADHD symptoms in EOP youth via lower offspring IGF2 methylation.


Subject(s)
Attention Deficit Disorder with Hyperactivity/etiology , Conduct Disorder/etiology , Diet, Carbohydrate Loading/adverse effects , Diet, High-Fat/adverse effects , Insulin-Like Growth Factor II/metabolism , Prenatal Exposure Delayed Effects/metabolism , Child , Child, Preschool , Cohort Studies , DNA Methylation , England , Female , Humans , Infant , Infant, Newborn , Male , Pregnancy
14.
Hum Mol Genet ; 25(19): 4339-4349, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27559110

ABSTRACT

BACKGROUND: Single variant approaches have been successful in identifying DNA methylation quantitative trait loci (mQTL), although as with complex traits they lack the statistical power to identify the effects from rare genetic variants. We have undertaken extensive analyses to identify regions of low frequency and rare variants that are associated with DNA methylation levels. METHODS: We used repeated measurements of DNA methylation from five different life stages in human blood, taken from the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort. Variants were collapsed across CpG islands and their flanking regions to identify variants collectively associated with methylation, where no single variant was individually responsible for the observed signal. All analyses were undertaken using the sequence kernel association test. RESULTS: For loci where no individual variant mQTL was observed based on a single variant analysis, we identified 95 unique regions where the combined effect of low frequency variants (MAF ≤ 5%) provided strong evidence of association with methylation. For loci where there was previous evidence of an individual variant mQTL, a further 3 regions provided evidence of association between multiple low frequency variants and methylation levels. Effects were observed consistently across 5 different time points in the lifecourse and evidence of replication in the TwinsUK and Exeter cohorts was also identified. CONCLUSION: We have demonstrated the potential of this novel approach to mQTL analysis by analysing the combined effect of multiple low frequency or rare variants. Future studies should benefit from applying this approach as a complementary follow up to single variant analyses.


Subject(s)
DNA Methylation/genetics , Genetic Variation/genetics , Genome-Wide Association Study , Quantitative Trait Loci/genetics , Adolescent , Adult , Child , Child, Preschool , CpG Islands/genetics , Female , Gene Expression Regulation/genetics , Gene Frequency , Genotype , Humans , Infant , Infant, Newborn , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics
16.
Genome Biol ; 17: 61, 2016 Mar 31.
Article in English | MEDLINE | ID: mdl-27036880

ABSTRACT

BACKGROUND: The influence of genetic variation on complex diseases is potentially mediated through a range of highly dynamic epigenetic processes exhibiting temporal variation during development and later life. Here we present a catalogue of the genetic influences on DNA methylation (methylation quantitative trait loci (mQTL)) at five different life stages in human blood: children at birth, childhood, adolescence and their mothers during pregnancy and middle age. RESULTS: We show that genetic effects on methylation are highly stable across the life course and that developmental change in the genetic contribution to variation in methylation occurs primarily through increases in environmental or stochastic effects. Though we map a large proportion of the cis-acting genetic variation, a much larger component of genetic effects influencing methylation are acting in trans. However, only 7 % of discovered mQTL are trans-effects, suggesting that the trans component is highly polygenic. Finally, we estimate the contribution of mQTL to variation in complex traits and infer that methylation may have a causal role consistent with an infinitesimal model in which many methylation sites each have a small influence, amounting to a large overall contribution. CONCLUSIONS: DNA methylation contains a significant heritable component that remains consistent across the lifespan. Our results suggest that the genetic component of methylation may have a causal role in complex traits. The database of mQTL presented here provide a rich resource for those interested in investigating the role of methylation in disease.


Subject(s)
DNA Methylation , DNA/blood , Genetic Variation , Quantitative Trait Loci , Adolescent , Child , Child, Preschool , CpG Islands , Databases, Genetic , Epigenesis, Genetic , Female , Genetic Association Studies , Humans , Infant, Newborn , Middle Aged , Pregnancy
17.
Epigenetics ; 11(2): 140-9, 2016.
Article in English | MEDLINE | ID: mdl-26889969

ABSTRACT

Prenatal maternal stress exposure has been associated with neonatal differential DNA methylation. However, the available evidence in humans is largely based on candidate gene methylation studies, where only a few CpG sites were evaluated. The aim of this study was to examine the association between prenatal exposure to maternal stress and offspring genome-wide cord blood methylation using different methods. First, we conducted a meta-analysis and follow-up pathway analyses. Second, we used novel region discovery methods [i.e., differentially methylated regions (DMRs) analyses]. To this end, we used data from two independent population-based studies, the Generation R Study (n = 912) and the Avon Longitudinal Study of Parents and Children (ALSPAC, n = 828), to (i) measure genome-wide DNA methylation in cord blood and (ii) extract a prenatal maternal stress composite. The meta-analysis (ntotal = 1,740) revealed no epigenome-wide (meta P <1.00e-07) associations of prenatal maternal stress exposure with neonatal differential DNA methylation. Follow-up analyses of the top hits derived from our epigenome-wide meta-analysis (meta P <1.00e-04) indicated an over-representation of the methyltransferase activity pathway. We identified no Bonferroni-corrected (P <1.00e-06) DMRs associated with prenatal maternal stress exposure. Combining data from two independent population-based samples in an epigenome-wide meta-analysis, the current study indicates that there are no large effects of prenatal maternal stress exposure on neonatal DNA methylation. Such replication efforts are essential in the search for robust associations, whether derived from candidate gene methylation or epigenome-wide studies.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Maternal Exposure , Prenatal Exposure Delayed Effects/genetics , Stress, Psychological/genetics , Adult , CpG Islands , Female , Fetal Blood/metabolism , Genome-Wide Association Study , Humans , Longitudinal Studies , Male , Pregnancy
18.
Diabetes ; 65(5): 1231-44, 2016 05.
Article in English | MEDLINE | ID: mdl-26861784

ABSTRACT

Multiple differentially methylated sites and regions associated with adiposity have now been identified in large-scale cross-sectional studies. We tested for replication of associations between previously identified CpG sites at HIF3A and adiposity in ∼1,000 mother-offspring pairs from the Avon Longitudinal Study of Parents and Children (ALSPAC). Availability of methylation and adiposity measures at multiple time points, as well as genetic data, allowed us to assess the temporal associations between adiposity and methylation and to make inferences regarding causality and directionality. Overall, our results were discordant with those expected if HIF3A methylation has a causal effect on BMI and provided more evidence for causality in the reverse direction (i.e., an effect of BMI on HIF3A methylation). These results are based on robust evidence from longitudinal analyses and were also partially supported by Mendelian randomization analysis, although this latter analysis was underpowered to detect a causal effect of BMI on HIF3A methylation. Our results also highlight an apparent long-lasting intergenerational influence of maternal BMI on offspring methylation at this locus, which may confound associations between own adiposity and HIF3A methylation. Further work is required to replicate and uncover the mechanisms underlying the direct and intergenerational effect of adiposity on DNA methylation.


Subject(s)
Adiposity , Adolescent Development , Basic Helix-Loop-Helix Transcription Factors/genetics , Body Mass Index , Child Development , DNA Methylation , Adolescent , Adult , Apoptosis Regulatory Proteins , Basic Helix-Loop-Helix Transcription Factors/metabolism , Birth Weight , Causality , Child , Cohort Studies , Confounding Factors, Epidemiologic , Cross-Sectional Studies , England/epidemiology , Female , Humans , Infant, Newborn , Longitudinal Studies , Male , Mothers , Overweight/epidemiology , Overweight/etiology , Overweight/genetics , Overweight/metabolism , Prospective Studies , Repressor Proteins , Thinness/epidemiology , Thinness/etiology , Thinness/genetics , Thinness/metabolism
19.
Hum Mol Genet ; 25(1): 191-201, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26546615

ABSTRACT

DNA methylation-based biomarkers of aging are highly correlated with actual age. Departures of methylation-estimated age from actual age can be used to define epigenetic measures of child development or age acceleration (AA) in adults. Very little is known about genetic or environmental determinants of these epigenetic measures of aging. We obtained DNA methylation profiles using Infinium HumanMethylation450 BeadChips across five time-points in 1018 mother-child pairs from the Avon Longitudinal Study of Parents and Children. Using the Horvath age estimation method, we calculated epigenetic age for these samples. AA was defined as the residuals from regressing epigenetic age on actual age. AA was tested for associations with cross-sectional clinical variables in children. We identified associations between AA and sex, birth weight, birth by caesarean section and several maternal characteristics in pregnancy, namely smoking, weight, BMI, selenium and cholesterol level. Offspring of non-drinkers had higher AA on average but this difference appeared to resolve during childhood. The associations between sex, birth weight and AA found in ARIES were replicated in an independent cohort (GOYA). In children, epigenetic AA measures are associated with several clinically relevant variables, and early life exposures appear to be associated with changes in AA during adolescence. Further research into epigenetic aging, including the use of causal inference methods, is required to better our understanding of aging.


Subject(s)
Aging/genetics , DNA Methylation , Epigenesis, Genetic , Birth Weight , Child , Cohort Studies , Humans , Longitudinal Studies , Mothers
20.
Eur J Hum Genet ; 24(7): 1035-40, 2016 07.
Article in English | MEDLINE | ID: mdl-26486471

ABSTRACT

Low von Willebrand factor (VWF) levels are associated with bleeding symptoms and are a diagnostic criterion for von Willebrand disease, the most common inherited bleeding disorder. To date, it is unclear which genetic loci are associated with reduced VWF levels. Therefore, we conducted a meta-analysis of genome-wide association studies to identify genetic loci associated with low VWF levels. For this meta-analysis, we included 31 149 participants of European ancestry from 11 community-based studies. From all participants, VWF antigen (VWF:Ag) measurements and genome-wide single-nucleotide polymorphism (SNP) scans were available. Each study conducted analyses using logistic regression of SNPs on dichotomized VWF:Ag measures (lowest 5% for blood group O and non-O) with an additive genetic model adjusted for age and sex. An inverse-variance weighted meta-analysis was performed for VWF:Ag levels. A total of 97 SNPs exceeded the genome-wide significance threshold of 5 × 10(-8) and comprised five loci on four different chromosomes: 6q24 (smallest P-value 5.8 × 10(-10)), 9q34 (2.4 × 10(-64)), 12p13 (5.3 × 10(-22)), 12q23 (1.2 × 10(-8)) and 13q13 (2.6 × 10(-8)). All loci were within or close to genes, including STXBP5 (Syntaxin Binding Protein 5) (6q24), STAB5 (stabilin-5) (12q23), ABO (9q34), VWF (12p13) and UFM1 (ubiquitin-fold modifier 1) (13q13). Of these, UFM1 has not been previously associated with VWF:Ag levels. Four genes that were previously associated with VWF levels (VWF, ABO, STXBP5 and STAB2) were also associated with low VWF levels, and, in addition, we identified a new gene, UFM1, that is associated with low VWF levels. These findings point to novel mechanisms for the occurrence of low VWF levels.


Subject(s)
Genetic Loci , Proteins/genetics , von Willebrand Diseases/genetics , von Willebrand Factor/metabolism , ABO Blood-Group System/genetics , Aged , Aged, 80 and over , Female , Genome-Wide Association Study , Humans , Male , Middle Aged , Nerve Tissue Proteins/genetics , Polymorphism, Single Nucleotide , R-SNARE Proteins/genetics , White People/genetics , von Willebrand Diseases/blood , von Willebrand Factor/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...