Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
1.
Res Sq ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38746293

ABSTRACT

Antimicrobial resistant (AMR) pathogens represent urgent threats to human health, and their surveillance is of paramount importance. Metagenomic next generation sequencing (mNGS) has revolutionized such efforts, but remains challenging due to the lack of open-access bioinformatics tools capable of simultaneously analyzing both microbial and AMR gene sequences. To address this need, we developed the CZ ID AMR module, an open-access, cloud-based workflow designed to integrate detection of both microbes and AMR genes in mNGS and whole-genome sequencing (WGS) data. It leverages the Comprehensive Antibiotic Resistance Database and associated Resistance Gene Identifier software, and works synergistically with the CZ ID short-read mNGS module to enable broad detection of both microbes and AMR genes. We highlight diverse applications of the AMR module through analysis of both publicly available and newly generated mNGS and WGS data from four clinical cohort studies and an environmental surveillance project. Through genomic investigations of bacterial sepsis and pneumonia cases, hospital outbreaks, and wastewater surveillance data, we gain a deeper understanding of infectious agents and their resistomes, highlighting the value of integrating microbial identification and AMR profiling for both research and public health. We leverage additional functionalities of the CZ ID mNGS platform to couple resistome profiling with the assessment of phylogenetic relationships between nosocomial pathogens, and further demonstrate the potential to capture the longitudinal dynamics of pathogen and AMR genes in hospital acquired bacterial infections. In sum, the new AMR module advances the capabilities of the open-access CZ ID microbial bioinformatics platform by integrating pathogen detection and AMR profiling from mNGS and WGS data. Its development represents a critical step toward democratizing pathogen genomic analysis and supporting collaborative efforts to combat the growing threat of AMR.

2.
bioRxiv ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38645206

ABSTRACT

Antimicrobial resistant (AMR) pathogens represent urgent threats to human health, and their surveillance is of paramount importance. Metagenomic next generation sequencing (mNGS) has revolutionized such efforts, but remains challenging due to the lack of open-access bioinformatics tools capable of simultaneously analyzing both microbial and AMR gene sequences. To address this need, we developed the Chan Zuckerberg ID (CZ ID) AMR module, an open-access, cloud-based workflow designed to integrate detection of both microbes and AMR genes in mNGS and whole-genome sequencing (WGS) data. It leverages the Comprehensive Antibiotic Resistance Database and associated Resistance Gene Identifier software, and works synergistically with the CZ ID short-read mNGS module to enable broad detection of both microbes and AMR genes. We highlight diverse applications of the AMR module through analysis of both publicly available and newly generated mNGS and WGS data from four clinical cohort studies and an environmental surveillance project. Through genomic investigations of bacterial sepsis and pneumonia cases, hospital outbreaks, and wastewater surveillance data, we gain a deeper understanding of infectious agents and their resistomes, highlighting the value of integrating microbial identification and AMR profiling for both research and public health. We leverage additional functionalities of the CZ ID mNGS platform to couple resistome profiling with the assessment of phylogenetic relationships between nosocomial pathogens, and further demonstrate the potential to capture the longitudinal dynamics of pathogen and AMR genes in hospital acquired bacterial infections. In sum, the new AMR module advances the capabilities of the open-access CZ ID microbial bioinformatics platform by integrating pathogen detection and AMR profiling from mNGS and WGS data. Its development represents a critical step toward democratizing pathogen genomic analysis and supporting collaborative efforts to combat the growing threat of AMR.

3.
J Infect Dis ; 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38298144

ABSTRACT

BACKGROUND: Macrolide antibiotics, including azithromycin, can reduce under-five mortality rates and treat various infections in children in sub-Saharan Africa. These exposures, however, can select for antibiotic-resistant bacteria in the gut microbiota. METHODS: Our previous randomized controlled trial (RCT) of a rapid-test-and-treat strategy for severe acute diarrhoeal disease in children in Botswana included an intervention (three-day azithromycin dose) group and a control group that received supportive treatment. In this prospective matched cohort study using stools collected at baseline and 60 days after treatment from RCT participants, the collection of antibiotic resistance genes or resistome was compared between groups. RESULTS: Certain macrolide resistance genes increased in prevalence by 13% to 55% at 60 days, without differences in gene presence between the intervention and control groups. These genes were linked to tetracycline resistance genes and mobile genetic elements. CONCLUSIONS: Azithromycin treatment for bacterial diarrhoea for young children in Botswana resulted in similar effects on the gut resistome as the supportive treatment and did not provide additional selective pressure for macrolide resistance gene maintenance. The gut microbiota of these children contains diverse macrolide resistance genes that may be transferred within the gut upon repeated exposures to azithromycin or co-selected by other antibiotics.

4.
Virol J ; 21(1): 8, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38178158

ABSTRACT

BACKGROUND: The COVID-19 pandemic, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 virus, emerged in late 2019 and spready globally. Many effects of infection with this pathogen are still unknown, with both chronic and repeated COVID-19 infection producing novel pathologies. CASE PRESENTATION: An immunocompromised patient presented with chronic COVID-19 infection. The patient had history of Hodgkin's lymphoma, treated with chemotherapy and stem cell transplant. During the course of their treatment, eleven respiratory samples from the patient were analyzed by whole-genome sequencing followed by lineage identification. Whole-genome sequencing of the virus present in the patient over time revealed that the patient at various timepoints harboured three different lineages of the virus. The patient was initially infected with the B.1.1.176 lineage before coinfection with BA.1. When the patient was coinfected with both B.1.1.176 and BA.1, the viral populations were found in approximately equal proportions within the patient based on sequencing read abundance. Upon further sampling, the lineage present within the patient during the final two timepoints was found to be BA.2.9. The patient eventually developed respiratory failure and died. CONCLUSIONS: This case study shows an example of the changes that can happen within an immunocompromised patient who is infected with COVID-19 multiple times. Furthermore, this case demonstrates how simultaneous coinfection with two lineages of COVID-19 can lead to unclear lineage assignment by standard methods, which are resolved by further investigation. When analyzing chronic COVID-19 infection and reinfection cases, care must be taken to properly identify the lineages of the virus present.


Subject(s)
COVID-19 , Coinfection , Humans , COVID-19/complications , Pandemics , SARS-CoV-2 , Immunocompromised Host
5.
Microbiol Spectr ; 11(6): e0274423, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37971258

ABSTRACT

IMPORTANCE: While increasing rates of antimicrobial resistance undermine our current arsenal of antibiotics, resistance-modifying agents (RMAs) hold promise to extend the lifetime of these important molecules. We here provide a standardized nomenclature for RMAs within the Comprehensive Antibiotic Resistance Database in aid of RMA discovery, data curation, and genome mining.


Subject(s)
Anti-Bacterial Agents , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics
6.
iScience ; 26(11): 108269, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38026185

ABSTRACT

Atherosclerotic cardiovascular disease is characterized by both chronic low-grade inflammation and dyslipidemia. The AMP-activated protein kinase (AMPK) inhibits cholesterol synthesis and dampens inflammation but whether pharmacological activation reduces atherosclerosis is equivocal. In the current study, we found that the orally bioavailable and highly selective activator of AMPKß1 complexes, PF-06409577, reduced atherosclerosis in two mouse models in a myeloid-derived AMPKß1 dependent manner, suggesting a critical role for macrophages. In bone marrow-derived macrophages (BMDMs), PF-06409577 dose dependently activated AMPK as indicated by increased phosphorylation of downstream substrates ULK1 and acetyl-CoA carboxylase (ACC), which are important for autophagy and fatty acid oxidation/de novo lipogenesis, respectively. Treatment of BMDMs with PF-06409577 suppressed fatty acid and cholesterol synthesis and transcripts related to the inflammatory response while increasing transcripts important for autophagy through AMPKß1. These data indicate that pharmacologically targeting macrophage AMPKß1 may be a promising strategy for reducing atherosclerosis.

7.
Emerg Infect Dis ; 29(7): 1386-1396, 2023 07.
Article in English | MEDLINE | ID: mdl-37308158

ABSTRACT

Isolating and characterizing emerging SARS-CoV-2 variants is key to understanding virus pathogenesis. In this study, we isolated samples of the SARS-CoV-2 R.1 lineage, categorized as a variant under monitoring by the World Health Organization, and evaluated their sensitivity to neutralizing antibodies and type I interferons. We used convalescent serum samples from persons in Canada infected either with ancestral virus (wave 1) or the B.1.1.7 (Alpha) variant of concern (wave 3) for testing neutralization sensitivity. The R.1 isolates were potently neutralized by both the wave 1 and wave 3 convalescent serum samples, unlike the B.1.351 (Beta) variant of concern. Of note, the R.1 variant was significantly more resistant to type I interferons (IFN-α/ß) than was the ancestral isolate. Our study demonstrates that the R.1 variant retained sensitivity to neutralizing antibodies but evolved resistance to type I interferons. This critical driving force will influence the trajectory of the pandemic.


Subject(s)
COVID-19 , Interferon Type I , Humans , SARS-CoV-2/genetics , Interferon Type I/genetics , Antibodies, Neutralizing , COVID-19 Serotherapy , Canada/epidemiology , Antibodies, Viral , Spike Glycoprotein, Coronavirus
8.
Microbiol Spectr ; 11(3): e0190022, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37093060

ABSTRACT

Genomic epidemiology can facilitate an understanding of evolutionary history and transmission dynamics of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak. We used next-generation sequencing techniques to study SARS-CoV-2 genomes isolated from patients and health care workers (HCWs) across five wards of a Canadian hospital with an ongoing SARS-CoV-2 outbreak. Using traditional contact tracing methods, we show transmission events between patients and HCWs, which were also supported by the SARS-CoV-2 lineage assignments. The outbreak predominantly involved SARS-CoV-2 B.1.564.1 across all five wards, but we also show evidence of community introductions of lineages B.1, B.1.1.32, and B.1.231, falsely assumed to be outbreak related. Altogether, our study exemplifies the value of using contact tracing in combination with genomic epidemiology to understand the transmission dynamics and genetic underpinnings of a SARS-CoV-2 outbreak. IMPORTANCE Our manuscript describes a SARS-CoV-2 outbreak investigation in an Ontario tertiary care hospital. We use traditional contract tracing paired with whole-genome sequencing to facilitate an understanding of the evolutionary history and transmission dynamics of this SARS-CoV-2 outbreak in a clinical setting. These advancements have enabled the incorporation of phylogenetics and genomic epidemiology into the understanding of clinical outbreaks. We show that genomic epidemiology can help to explore the genetic evolution of a pathogen in real time, enabling the identification of the index case and helping understand its transmission dynamics to develop better strategies to prevent future spread of SARS-CoV-2 in congregate, clinical settings such as hospitals.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Contact Tracing , COVID-19/epidemiology , Ontario/epidemiology , Tertiary Care Centers , Disease Outbreaks
9.
Database (Oxford) ; 20232023 04 20.
Article in English | MEDLINE | ID: mdl-37079891

ABSTRACT

Scientific literature is published at a rate that makes manual data extraction a highly time-consuming task. The Comprehensive Antibiotic Resistance Database (CARD) utilizes literature to curate information on antimicrobial resistance genes and to enable time-efficient triage of publications we have developed a classification algorithm for identifying publications describing first reports of new resistance genes. Trained on publications contained in the CARD, CARD*Shark downloads, processes and identifies publications recently added to PubMed that should be reviewed by biocurators. With CARD*Shark, we can minimize the monthly scope of articles a biocurator reviews from hundreds of articles to a few dozen, drastically improving the speed of curation while ensuring no relevant publications are overlooked. Database URL http://card.mcmaster.ca.


Subject(s)
Algorithms , Publications , Databases, Factual , Drug Resistance, Microbial/genetics , PubMed , Data Mining , Data Curation
10.
Microb Genom ; 9(1)2023 01.
Article in English | MEDLINE | ID: mdl-36748616

ABSTRACT

Pathogen genomics is a critical tool for public health surveillance, infection control, outbreak investigations as well as research. In order to make use of pathogen genomics data, they must be interpreted using contextual data (metadata). Contextual data include sample metadata, laboratory methods, patient demographics, clinical outcomes and epidemiological information. However, the variability in how contextual information is captured by different authorities and how it is encoded in different databases poses challenges for data interpretation, integration and their use/re-use. The DataHarmonizer is a template-driven spreadsheet application for harmonizing, validating and transforming genomics contextual data into submission-ready formats for public or private repositories. The tool's web browser-based JavaScript environment enables validation and its offline functionality and local installation increases data security. The DataHarmonizer was developed to address the data sharing needs that arose during the COVID-19 pandemic, and was used by members of the Canadian COVID Genomics Network (CanCOGeN) to harmonize SARS-CoV-2 contextual data for national surveillance and for public repository submission. In order to support coordination of international surveillance efforts, we have partnered with the Public Health Alliance for Genomic Epidemiology to also provide a template conforming to its SARS-CoV-2 contextual data specification for use worldwide. Templates are also being developed for One Health and foodborne pathogens. Overall, the DataHarmonizer tool improves the effectiveness and fidelity of contextual data capture as well as its subsequent usability. Harmonization of contextual information across authorities, platforms and systems globally improves interoperability and reusability of data for concerted public health and research initiatives to fight the current pandemic and future public health emergencies. While initially developed for the COVID-19 pandemic, its expansion to other data management applications and pathogens is already underway.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Pandemics , SARS-CoV-2/genetics , Canada , Genomics/methods
11.
Nucleic Acids Res ; 51(D1): D690-D699, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36263822

ABSTRACT

The Comprehensive Antibiotic Resistance Database (CARD; card.mcmaster.ca) combines the Antibiotic Resistance Ontology (ARO) with curated AMR gene (ARG) sequences and resistance-conferring mutations to provide an informatics framework for annotation and interpretation of resistomes. As of version 3.2.4, CARD encompasses 6627 ontology terms, 5010 reference sequences, 1933 mutations, 3004 publications, and 5057 AMR detection models that can be used by the accompanying Resistance Gene Identifier (RGI) software to annotate genomic or metagenomic sequences. Focused curation enhancements since 2020 include expanded ß-lactamase curation, incorporation of likelihood-based AMR mutations for Mycobacterium tuberculosis, addition of disinfectants and antiseptics plus their associated ARGs, and systematic curation of resistance-modifying agents. This expanded curation includes 180 new AMR gene families, 15 new drug classes, 1 new resistance mechanism, and two new ontological relationships: evolutionary_variant_of and is_small_molecule_inhibitor. In silico prediction of resistomes and prevalence statistics of ARGs has been expanded to 377 pathogens, 21,079 chromosomes, 2,662 genomic islands, 41,828 plasmids and 155,606 whole-genome shotgun assemblies, resulting in collation of 322,710 unique ARG allele sequences. New features include the CARD:Live collection of community submitted isolate resistome data and the introduction of standardized 15 character CARD Short Names for ARGs to support machine learning efforts.


Subject(s)
Data Curation , Databases, Factual , Drug Resistance, Microbial , Machine Learning , Anti-Bacterial Agents/pharmacology , Genes, Bacterial , Likelihood Functions , Software , Molecular Sequence Annotation
12.
Opt Express ; 30(15): 27285-27292, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-36236902

ABSTRACT

Mid-IR is a useful wavelength range for both science and military applications due to its low atmospheric attenuation and ability to be used for passive detection. However, many solutions for detecting light in this spectral region need to be operated at cryogenic temperatures as their required narrow bandgaps suffer from carrier recombination and band-to-band tunneling at room temperature leading to high dark currents. These problems can be alleviated by using a separate absorption, charge, and multiplication avalanche photodiode. We have recently demonstrated such a device with a 3-µm cutoff using Al0.15In0.85As0.77Sb0.23, as the absorber, grown on GaSb. Here we investigate Al0.15In0.85As0.77Sb0.23 as a simple PIN homojunction and provide metrics to aid in future designs using this material. PL spectrum measurements indicate a bandgap of 2.94 µm at 300 K. External quantum efficiencies of 39% and 33% are achieved at 1.55 µm and 2 µm respectively. Between 180 K and 280 K the activation energy is ∼0.22 eV, roughly half the bandgap of Al0.15In0.85As0.77Sb0.23, indicating thermal generation is dominant.

13.
Microb Genom ; 8(9)2022 09.
Article in English | MEDLINE | ID: mdl-36129737

ABSTRACT

Enterococcus faecium is a ubiquitous opportunistic pathogen that is exhibiting increasing levels of antimicrobial resistance (AMR). Many of the genes that confer resistance and pathogenic functions are localized on mobile genetic elements (MGEs), which facilitate their transfer between lineages. Here, features including resistance determinants, virulence factors and MGEs were profiled in a set of 1273 E. faecium genomes from two disparate geographic locations (in the UK and Canada) from a range of agricultural, clinical and associated habitats. Neither lineages of E. faecium, type A and B, nor MGEs are constrained by geographic proximity, but our results show evidence of a strong association of many profiled genes and MGEs with habitat. Many features were associated with a group of clinical and municipal wastewater genomes that are likely forming a new human-associated ecotype within type A. The evolutionary dynamics of E. faecium make it a highly versatile emerging pathogen, and its ability to acquire, transmit and lose features presents a high risk for the emergence of new pathogenic variants and novel resistance combinations. This study provides a workflow for MGE-centric surveillance of AMR in Enterococcus that can be adapted to other pathogens.


Subject(s)
Anti-Infective Agents , Enterococcus faecium , One Health , Enterococcus faecium/genetics , Humans , Virulence Factors/genetics , Wastewater
14.
Microbiome ; 10(1): 136, 2022 08 26.
Article in English | MEDLINE | ID: mdl-36008821

ABSTRACT

BACKGROUND: Probiotic use in preterm infants can mitigate the impact of antibiotic exposure and reduce rates of certain illnesses; however, the benefit on the gut resistome, the collection of antibiotic resistance genes, requires further investigation. We hypothesized that probiotic supplementation of early preterm infants (born < 32-week gestation) while in hospital reduces the prevalence of antibiotic resistance genes associated with pathogenic bacteria in the gut. We used a targeted capture approach to compare the resistome from stool samples collected at the term corrected age of 40 weeks for two groups of preterm infants (those that routinely received a multi-strain probiotic during hospitalization and those that did not) with samples from full-term infants at 10 days of age to identify if preterm birth or probiotic supplementation impacted the resistome. We also compared the two groups of preterm infants up to 5 months of age to identify persistent antibiotic resistance genes. RESULTS: At the term corrected age, or 10 days of age for the full-term infants, we found over 80 antibiotic resistance genes in the preterm infants that did not receive probiotics that were not identified in either the full-term or probiotic-supplemented preterm infants. More genes associated with antibiotic inactivation mechanisms were identified in preterm infants unexposed to probiotics at this collection time-point compared to the other infants. We further linked these genes to mobile genetic elements and Enterobacteriaceae, which were also abundant in their gut microbiomes. Various genes associated with aminoglycoside and beta-lactam resistance, commonly found in pathogenic bacteria, were retained for up to 5 months in the preterm infants that did not receive probiotics. CONCLUSIONS: This pilot survey of preterm infants shows that probiotics administered after preterm birth during hospitalization reduced the diversity and prevented persistence of antibiotic resistance genes in the gut microbiome. The benefits of probiotic use on the microbiome and the resistome should be further explored in larger groups of infants. Due to its high sensitivity and lower sequencing cost, our targeted capture approach can facilitate these surveys to further address the implications of resistance genes persisting into infancy without the need for large-scale metagenomic sequencing. Video Abstract.


Subject(s)
Premature Birth , Probiotics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteria/genetics , Dietary Supplements , Female , Humans , Infant , Infant, Newborn , Infant, Premature
15.
mSystems ; 7(3): e0002222, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35642524

ABSTRACT

Short-read sequencing can provide detection of multiple genomic determinants of antimicrobial resistance from single bacterial genomes and metagenomic samples. Despite its increasing application in human, animal, and environmental microbiology, including human clinical trials, the performance of short-read Illumina sequencing for antimicrobial resistance gene (ARG) detection, including resistance-conferring single nucleotide polymorphisms (SNPs), has not been systematically characterized. Using paired-end 2 × 150 bp (base pair) Illumina sequencing and an assembly-based method for ARG prediction, we determined sensitivity, positive predictive value (PPV), and sequencing depths required for ARG detection in an Escherichia coli isolate of sequence type (ST) 38 spiked into a synthetic microbial community at varying abundances. Approximately 300,000 reads or 15× genome coverage was sufficient to detect ARGs in E. coli ST38, with comparable sensitivity and PPV to ~100× genome coverage. Using metagenome assembly of mixed microbial communities, ARG detection at E. coli relative abundances of 1% would require assembly of approximately 30 million reads to achieve 15× target coverage. The minimum sequencing depths were validated using public data sets of 948 E. coli genomes and 10 metagenomic rectal swab samples. A read-based approach using k-mer alignment (KMA) for ARG prediction did not substantially improve minimum sequencing depths for ARG detection compared to assembly of the E. coli ST38 genome or the combined metagenomic samples. Analysis of sequencing depths from recent studies assessing ARG content in metagenomic samples demonstrated that sequencing depths had a median estimated detection frequency of 84% (interquartile range: 30%-92%) for a relative abundance of 1%. IMPORTANCE Systematically determining Illumina sequencing performance characteristics for detection of ARGs in metagenomic samples is essential to inform study design and appraisal of human, animal, and environmental metagenomic antimicrobial resistance studies. In this study, we quantified the performance characteristics of ARG detection in E. coli genomes and metagenomes and established a benchmark of ~15× coverage for ARG detection for E. coli in metagenomes. We demonstrate that for low relative abundances, sequencing depths of ~30 million reads or more may be required for adequate sensitivity for many applications.


Subject(s)
Anti-Bacterial Agents , Metagenome , Animals , Humans , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Escherichia coli/genetics , High-Throughput Nucleotide Sequencing/methods , Metagenome/genetics , Genome, Bacterial
16.
Sci Data ; 9(1): 341, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35705638

ABSTRACT

Whole genome sequencing (WGS) is a key tool in identifying and characterising disease-associated bacteria across clinical, agricultural, and environmental contexts. One increasingly common use of genomic and metagenomic sequencing is in identifying the type and range of antimicrobial resistance (AMR) genes present in bacterial isolates in order to make predictions regarding their AMR phenotype. However, there are a large number of alternative bioinformatics software and pipelines available, which can lead to dissimilar results. It is, therefore, vital that researchers carefully evaluate their genomic and metagenomic AMR analysis methods using a common dataset. To this end, as part of the Microbial Bioinformatics Hackathon and Workshop 2021, a 'gold standard' reference genomic and simulated metagenomic dataset was generated containing raw sequence reads mapped against their corresponding reference genome from a range of 174 potentially pathogenic bacteria. These datasets and their accompanying metadata are freely available for use in benchmarking studies of bacteria and their antimicrobial resistance genes and will help improve tool development for the identification of AMR genes in complex samples.


Subject(s)
Anti-Bacterial Agents , Bacteria , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Benchmarking , Drug Resistance, Bacterial/genetics , Genome, Bacterial , Microbial Sensitivity Tests , Whole Genome Sequencing
17.
Clin Microbiol Rev ; 35(3): e0017921, 2022 09 21.
Article in English | MEDLINE | ID: mdl-35612324

ABSTRACT

Antimicrobial resistance (AMR) is a global health crisis that poses a great threat to modern medicine. Effective prevention strategies are urgently required to slow the emergence and further dissemination of AMR. Given the availability of data sets encompassing hundreds or thousands of pathogen genomes, machine learning (ML) is increasingly being used to predict resistance to different antibiotics in pathogens based on gene content and genome composition. A key objective of this work is to advocate for the incorporation of ML into front-line settings but also highlight the further refinements that are necessary to safely and confidently incorporate these methods. The question of what to predict is not trivial given the existence of different quantitative and qualitative laboratory measures of AMR. ML models typically treat genes as independent predictors, with no consideration of structural and functional linkages; they also may not be accurate when new mutational variants of known AMR genes emerge. Finally, to have the technology trusted by end users in public health settings, ML models need to be transparent and explainable to ensure that the basis for prediction is clear. We strongly advocate that the next set of AMR-ML studies should focus on the refinement of these limitations to be able to bridge the gap to diagnostic implementation.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Bacterial/genetics , Machine Learning
18.
Microb Genom ; 8(5)2022 05.
Article in English | MEDLINE | ID: mdl-35584003

ABSTRACT

Outbreaks of virulent and/or drug-resistant bacteria have a significant impact on human health and major economic consequences. Genomic islands (GIs; defined as clusters of genes of probable horizontal origin) are of high interest because they disproportionately encode virulence factors, some antimicrobial-resistance (AMR) genes, and other adaptations of medical or environmental interest. While microbial genome sequencing has become rapid and inexpensive, current computational methods for GI analysis are not amenable for rapid, accurate, user-friendly and scalable comparative analysis of sets of related genomes. To help fill this gap, we have developed IslandCompare, an open-source computational pipeline for GI prediction and comparison across several to hundreds of bacterial genomes. A dynamic and interactive visualization strategy displays a bacterial core-genome phylogeny, with bacterial genomes linearly displayed at the phylogenetic tree leaves. Genomes are overlaid with GI predictions and AMR determinants from the Comprehensive Antibiotic Resistance Database (CARD), and regions of similarity between the genomes are also displayed. GI predictions are performed using Sigi-HMM and IslandPath-DIMOB, the two most precise GI prediction tools based on nucleotide composition biases, as well as a novel blast-based consistency step to improve cross-genome prediction consistency. GIs across genomes sharing sequence similarity are grouped into clusters, further aiding comparative analysis and visualization of acquisition and loss of mobile GIs in specific sub-clades. IslandCompare is an open-source software that is containerized for local use, plus available via a user-friendly, web-based interface to allow direct use by bioinformaticians, biologists and clinicians (at https://islandcompare.ca).


Subject(s)
Genome, Bacterial , Genomic Islands , Bacteria/genetics , Disease Outbreaks , Genomic Islands/genetics , Humans , Phylogeny
19.
Mol Metab ; 61: 101498, 2022 07.
Article in English | MEDLINE | ID: mdl-35452877

ABSTRACT

BACKGROUND/PURPOSE: Type 2 diabetes and obesity increase the risk of developing colorectal cancer. Metformin may reduce colorectal cancer but the mechanisms mediating this effect remain unclear. In mice and humans, a high-fat diet (HFD), obesity and metformin are known to alter the gut microbiome but whether this is important for influencing tumor growth is not known. METHODS: Mice with syngeneic MC38 colon adenocarcinomas were treated with metformin or feces obtained from control or metformin treated mice. RESULTS: We find that compared to chow-fed controls, tumor growth is increased when mice are fed a HFD and that this acceleration of tumor growth can be partially recapitulated through transfer of the fecal microbiome or in vitro treatment of cells with fecal filtrates from HFD-fed animals. Treatment of HFD-fed mice with orally ingested, but not intraperitoneally injected, metformin suppresses tumor growth and increases the expression of short-chain fatty acid (SCFA)-producing microbes Alistipes, Lachnospiraceae and Ruminococcaceae. The transfer of the gut microbiome from mice treated orally with metformin to drug naïve, conventionalized HFD-fed mice increases circulating propionate and butyrate, reduces tumor proliferation, and suppresses the expression of sterol response element binding protein (SREBP) gene targets in the tumor. CONCLUSION: These data indicate that in obese mice fed a HFD, metformin reduces tumor burden through changes in the gut microbiome.


Subject(s)
Colorectal Neoplasms , Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Metformin , Animals , Diet, High-Fat/adverse effects , Gastrointestinal Microbiome/physiology , Metformin/pharmacology , Metformin/therapeutic use , Mice , Mice, Inbred C57BL , Obesity/drug therapy
20.
J Infect Dis ; 225(5): 768-776, 2022 03 02.
Article in English | MEDLINE | ID: mdl-34850051

ABSTRACT

BACKGROUND: We determined the burden of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in air and on surfaces in rooms of patients hospitalized with coronavirus disease 2019 (COVID-19) and investigated patient characteristics associated with SARS-CoV-2 environmental contamination. METHODS: Nasopharyngeal swabs, surface, and air samples were collected from the rooms of 78 inpatients with COVID-19 at 6 acute care hospitals in Toronto from March to May 2020. Samples were tested for SARS-CoV-2 ribonucleic acid (RNA), cultured to determine potential infectivity, and whole viral genomes were sequenced. Association between patient factors and detection of SARS-CoV-2 RNA in surface samples were investigated. RESULTS: Severe acute respiratory syndrome coronavirus 2 RNA was detected from surfaces (125 of 474 samples; 42 of 78 patients) and air (3 of 146 samples; 3 of 45 patients); 17% (6 of 36) of surface samples from 3 patients yielded viable virus. Viral sequences from nasopharyngeal and surface samples clustered by patient. Multivariable analysis indicated hypoxia at admission, polymerase chain reaction-positive nasopharyngeal swab (cycle threshold of ≤30) on or after surface sampling date, higher Charlson comorbidity score, and shorter time from onset of illness to sampling date were significantly associated with detection of SARS-CoV-2 RNA in surface samples. CONCLUSIONS: The infrequent recovery of infectious SARS-CoV-2 virus from the environment suggests that the risk to healthcare workers from air and near-patient surfaces in acute care hospital wards is likely limited.


Subject(s)
COVID-19 , Nasopharynx/virology , Respiratory Aerosols and Droplets , SARS-CoV-2/isolation & purification , Adult , Aged , Air Microbiology , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/transmission , COVID-19 Nucleic Acid Testing , Canada/epidemiology , Environmental Exposure , Health Personnel , Humans , Inpatients , Middle Aged , Pandemics/prevention & control , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...