Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunother Cancer ; 9(9)2021 09.
Article in English | MEDLINE | ID: mdl-34479921

ABSTRACT

BACKGROUND: The clinical benefit of immune checkpoint blockade (ICB) therapy is often limited by the lack of pre-existing CD8+ T cells infiltrating the tumor. In principle, CD8+ T-cell infiltration could be promoted by therapeutic vaccination. However, this remains challenging given the paucity of vaccine platforms able to induce the strong cytotoxic CD8+ T-cell response required to reject tumors. A therapeutic cancer vaccine that induces a robust cytotoxic CD8+ T-cell response against shared tumor antigens and can be combined with ICB could improve the outcome of cancer immunotherapy. METHODS: Here, we developed a heterologous prime-boost vaccine based on a chimpanzee adenovirus (ChAdOx1) and a modified vaccinia Ankara (MVA) encoding MAGE-type antigens, which are tumor-specific shared antigens expressed in different tumor types. The mouse MAGE-type antigen P1A was used as a surrogate to study the efficacy of the vaccine in combination with ICB in murine tumor models expressing the P1A antigen. To characterize the vaccine-induced immune response, we performed flow cytometry and transcriptomic analyses. RESULTS: The ChAdOx1/MVA vaccine displayed strong immunogenicity with potent induction of CD8+ T cells. When combined with anti-Programmed Cell Death Protein 1 (PD-1), the vaccine induced superior tumor clearance and survival in murine tumor models expressing P1A compared with anti-PD-1 alone. Remarkably, ChAdOx1/MVA P1A vaccination promoted CD8+ T-cell infiltration in the tumors, and drove inflammation in the tumor microenvironment, turning 'cold' tumors into 'hot' tumors. Single-cell transcriptomic analysis of the P1A-specific CD8+ T cells revealed an expanded population of stem-like T cells in the spleen after the combination treatment as compared with vaccine alone, and a reduced PD-1 expression in the tumor CD8+ T cells. CONCLUSIONS: These findings highlight the synergistic potency of ChAdOx1/MVA MAGE vaccines combined with anti-PD-1 for cancer therapy, and establish the foundation for clinical translation of this approach. A clinical trial of ChadOx1/MVA MAGE-A3/NY-ESO-1 combined with anti-PD-1 will commence shortly.


Subject(s)
Antigens, Heterophile/drug effects , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy/methods , Neoplasms/drug therapy , Vaccination/methods , Animals , Female , Humans , Immune Checkpoint Inhibitors/pharmacology , Mice , Tumor Microenvironment
2.
J Clin Invest ; 129(9): 3640-3656, 2019 06 04.
Article in English | MEDLINE | ID: mdl-31162141

ABSTRACT

Physiological effects of cellular hypoxia are sensed by prolyl hydroxylase (PHD) enzymes which regulate HIFs. Genetic interventions on HIF/PHD pathways reveal multiple phenotypes that extend the known biology of hypoxia. Recent studies unexpectedly implicate HIF in aspects of multiple immune and inflammatory pathways. However such studies are often limited by systemic lethal effects and/or use tissue-specific recombination systems, which are inherently irreversible, un-physiologically restricted and difficult to time. To study these processes better we developed recombinant mice which express tetracycline-regulated shRNAs broadly targeting the main components of the HIF/PHD pathway, permitting timed bi-directional intervention. We have shown that stabilization of HIF levels in adult mice through PHD2 enzyme silencing by RNA interference, or inducible recombination of floxed alleles, results in multi-lineage leukocytosis and features of autoimmunity. This phenotype was rapidly normalized on re-establishment of the hypoxia-sensing machinery when shRNA expression was discontinued. In both situations these effects were mediated principally through the Hif2a isoform. Assessment of cells bearing regulatory T cell markers from these mice revealed defective function and pro-inflammatory effects in vivo. We believe our findings have shown a new role for the PHD2/Hif2a couple in the reversible regulation of T cell and immune activity.


Subject(s)
Hypoxia-Inducible Factor-Proline Dioxygenases , RNA Interference/immunology , Signal Transduction , T-Lymphocytes, Regulatory , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/immunology , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Hypoxia-Inducible Factor-Proline Dioxygenases/immunology , Mice , Mice, Transgenic , Signal Transduction/genetics , Signal Transduction/immunology , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/metabolism
3.
Placenta ; 56: 8-13, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28330647

ABSTRACT

In this review we note that the placenta and cancer both develop in microenvironments in which there are gradients of oxygen availability. Whilst fundamentally different in that placental development is organised and physiological whilst cancer is chaotic and pathological, there are similarities in their respective capacities to proliferate, invade adjacent tissues, generate a blood supply and avoid rejection by the immune system. We provide a brief description of the hypoxia-inducible factor (HIF) pathway and indicate the ways by which HIF activity can be regulated to achieve oxygen homeostasis. We then exemplify the potential role of the HIF pathway in contributing to those functions shared between the placenta and cancer through effects on cellular proliferation, cell death, angiogenesis, blood vessel co-option, vascular mimicry, cell adhesion molecules, secretion of matrix metalloproteinases, antigen presentation mechanisms and immunosuppressive factors. We advocate future studies to explore these similarities and differences in the hope of improving our understanding of both systems and hence treatments of placental disorders and cancer.


Subject(s)
Hypoxia-Inducible Factor 1/metabolism , Hypoxia/metabolism , Neoplasms/metabolism , Neovascularization, Pathologic/metabolism , Placenta/metabolism , Placentation/physiology , Animals , Female , Humans , Hypoxia/pathology , Neoplasms/pathology , Neovascularization, Pathologic/pathology , Oxygen/metabolism , Placenta/pathology , Pregnancy , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...