Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
PLoS One ; 17(4): e0265963, 2022.
Article in English | MEDLINE | ID: mdl-35417466

ABSTRACT

Quantifying the factors associated with the presence and abundance of species is critical for conservation. Here, we quantify the factors associated with the occurrence of the Southern Greater Glider in the forests of the Central Highlands of Victoria, south-eastern Australia. We gathered counts of animals along transects and constructed models of the probability of absence, and then the abundance if animals were present (conditional abundance), based on species' associations with forest type, forest age, the abundance of denning sites in large old hollow-bearing trees, climatic conditions, and vegetation density. We found evidence of forest type effects, with animals being extremely uncommon in Alpine Ash and Shining Gum forest. In Mountain Ash forest, we found a negative relationship between the abundance of hollow-bearing trees and the probability of Southern Greater Glider absence. We also found a forest age effect, with the Southern Greater Glider completely absent from the youngest sites that were subject to a high-severity, stand-replacing wildfire in 2009. The best fitting conditional abundance model for the Southern Greater Glider included a strong positive effect of elevation; the species was more abundant in Mountain Ash forests at higher elevations. Our study highlights the importance of sites with large old hollow-bearing trees for the Southern Greater Glider, although such trees are in rapid decline in Mountain Ash forests. The influence of elevation on conditional abundance suggests that areas at higher elevations will be increasingly important for the conservation of the species, except where Mountain Ash forest is replaced by different tree species that may be unsuitable for the Southern Greater Glider.


Subject(s)
Forests , Wildfires , Animals , Victoria
2.
Ecol Evol ; 11(14): 9254-9292, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34306621

ABSTRACT

Forest ecosystems experience a myriad of natural and anthropogenic disturbances that shape ecological communities. Seedling emergence is a critical, preliminary stage in the recovery of forests post​ disturbance and is triggered by a series of abiotic and biotic changes. However, the long-term influence of different disturbance histories on patterns of seedling emergence is poorly understood.Here, we address this research gap by using an 11-year dataset gathered between 2009 and 2020 to quantify the influence of different histories of natural (wildfire) and anthropogenic (clearcut and postfire salvage logging) disturbances on emerging seedlings in early-successional Mountain Ash forests in southeastern Australia. We also describe patterns of seedling emergence across older successional forests varying in stand age (stands that regenerated in <1900s, 1939, 1970-90, and 2007-11).Seedling emergence was highest in the first three years post disturbance. Stand age and disturbance history significantly influenced the composition and abundance of plant seedlings. Specifically, in salvage-logged forests, plant seedlings were the most different from similarly aged forests with other disturbance histories. For instance, relative to clearcut and unlogged, burnt forests of the same age, salvage logging had the lowest overall richness, the lowest counts of Acacia seedlings, and an absence of common species including Acacia obliquinervia, Acacia frigescens, Cassinia arcuealta, Olearia argophylla, Pimelea axiflora, Polyscias sambucifolia, and Prosanthera melissifolia over the survey period. Synthesis: Our findings provide important new insights into the influence of different disturbance histories on regenerating forests and can help predict plant community responses to future disturbances, which may influence forest recovery under altered disturbance regimes.

3.
PLoS One ; 13(2): e0193132, 2018.
Article in English | MEDLINE | ID: mdl-29474487

ABSTRACT

Large old trees are critically important keystone structures in forest ecosystems globally. Populations of these trees are also in rapid decline in many forest ecosystems, making it important to quantify the factors that influence their dynamics at different spatial scales. Large old trees often occur in forest landscapes also subject to fire and logging. However, the effects on the risk of collapse of large old trees of the amount of logging and fire in the surrounding landscape are not well understood. Using an 18-year study in the Mountain Ash (Eucalyptus regnans) forests of the Central Highlands of Victoria, we quantify relationships between the probability of collapse of large old hollow-bearing trees at a site and the amount of logging and the amount of fire in the surrounding landscape. We found the probability of collapse increased with an increasing amount of logged forest in the surrounding landscape. It also increased with a greater amount of burned area in the surrounding landscape, particularly for trees in highly advanced stages of decay. The most likely explanation for elevated tree fall with an increasing amount of logged or burned areas in the surrounding landscape is change in wind movement patterns associated with cutblocks or burned areas. Previous studies show that large old hollow-bearing trees are already at high risk of collapse in our study area. New analyses presented here indicate that additional logging operations in the surrounding landscape will further elevate that risk. Current logging prescriptions require the protection of large old hollow-bearing trees on cutblocks. We suggest that efforts to reduce the probability of collapse of large old hollow-bearing trees on unlogged sites will demand careful landscape planning to limit the amount of timber harvesting in the surrounding landscape.


Subject(s)
Forestry , Forests , Fraxinus , Models, Theoretical , Wind
4.
Ecol Appl ; 26(7): 2280-2301, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27755744

ABSTRACT

Understanding the impacts of natural and human disturbances on forest biota is critical for improving forest management. Many studies have examined the separate impacts on fauna and flora of wildfire, conventional logging, and salvage logging, but empirical comparisons across a broad gradient of simultaneous disturbances are lacking. We quantified species richness and frequency of occurrence of vascular plants, and functional group responses, across a gradient of disturbances that occurred concurrently in 2009 in the mountain ash forests of southeastern Australia. Our study encompassed replicated sites in undisturbed forest (~70 yr post fire), forest burned at low severity, forest burned at high severity, unburned forest that was clearcut logged, and forest burned at high severity that was clearcut salvage logged post-fire. All sites were sampled 2 and 3 yr post fire. Mean species richness decreased across the disturbance gradient from 30.1 species/site on low-severity burned sites and 28.9 species/site on high-severity burned sites, to 25.1 species/site on clearcut sites and 21.7 species/site on salvage logged sites. Low-severity burned sites were significantly more species-rich than clearcut sites and salvage logged sites; high-severity burned sites supported greater species richness than salvage logged sites. Specific traits influenced species' sensitivity to disturbance. Resprouting species dominated undisturbed mountain ash forests, but declined significantly across the gradient. Fern and midstory trees decreased significantly in frequency of occurrence across the gradient. Ferns (excluding bracken) decreased from 34% of plants in undisturbed forest to 3% on salvage logged sites. High-severity burned sites supported a greater frequency of occurrence and species richness of midstory trees compared to clearcut and salvage logged sites. Salvage logging supported fewer midstory trees than any other disturbance category, and were distinctly different from clearcut sites. Plant life form groups, including midstory trees, shrubs, and ferns, were dominated by very few species on logged sites. The differences in biotic response across the gradient of natural and human disturbances have significant management implications, particularly the need to reduce mechanical disturbance overall and to leave specific areas with no mechanical disturbance across the cut area during logging operations, to ensure the persistence of resprouting taxa.


Subject(s)
Biodiversity , Fires , Forestry , Plants/classification , Australia , Conservation of Natural Resources , Environmental Monitoring , Forests
5.
Mol Ecol ; 24(15): 3831-45, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26089175

ABSTRACT

Ecological disturbance and climate are key drivers of temporal dynamics in the demography and genetic diversity of natural populations. Microscale refuges are known to buffer species' persistence against environmental change, but the effects of such refuges on demographic and genetic patterns in response to short-term environmental variation are poorly understood. We quantified demographic and genetic responses of mountain brushtail possums (Trichosurus cunninghami) to rainfall variability (1992-2013) and to a major wildfire. We hypothesized that there would be underlying differences in demographic and genetic processes between an unburnt mesic refuge and a topographically exposed zone that was burnt in 2009. Fire caused a 2-year decrease in survival in the burnt zone, but the population grew after the fire due to immigration, leading to increased expected heterozygosity. We documented a fire-related behavioural shift, where the rate of movement by individuals in the unburnt refuge to the burnt zone decreased after fire. Irrespective of the fire, there were long-term differences in demographic and genetic parameters between the mesic/unburnt refuge and the nonmesic/burnt zone. Survival was high and unaffected by rainfall in the refuge, but lower and rainfall-dependent in the nonmesic zone. Net movement of individuals was directional, from the mesic refuge to the nonmesic zone, suggesting fine-scale source-sink dynamics. There were higher expected heterozygosity (HE ) and temporal genetic stability in the refuge, but lower HE and marked temporal genetic structure in the exposed habitat, consistent with reduced generational overlap caused by elevated mortality and immigration. Thus, fine-scale refuges can mediate the short-term demographic and genetic effects of climate and ecological disturbance.


Subject(s)
Climate , Ecosystem , Trichosurus/genetics , Animals , Disasters , Fires , Genetic Variation , Genotype , Molecular Sequence Data , Population Density , Population Dynamics , Rain , Victoria
6.
PLoS One ; 9(10): e109830, 2014.
Article in English | MEDLINE | ID: mdl-25337999

ABSTRACT

Ecogeographical rules help explain spatial and temporal patterns in intraspecific body size. However, many of these rules, when applied to ectothermic organisms such as reptiles, are controversial and require further investigation. To explore factors that influence body size in reptiles, we performed a heuristic study to examine body size variation in an Australian lizard, Boulenger's Skink Morethia boulengeri from agricultural landscapes in southern New South Wales, south-eastern Australia. We collected tissue and morphological data on 337 adult lizards across a broad elevation and climate gradient. We used a model-selection procedure to determine if environmental or ecological variables best explained body size variation. We explored the relationship between morphology and phylogenetic structure before modeling candidate variables from four broad domains: (1) geography (latitude, longitude and elevation), (2) climate (temperature and rainfall), (3) habitat (vegetation type, number of logs and ground cover attributes), and (4) management (land use and grazing history). Broad phylogenetic structure was evident, but on a scale larger than our study area. Lizards were sexually dimorphic, whereby females had longer snout-vent length than males, providing support for the fecundity selection hypothesis. Body size variation in M. boulengeri was correlated with temperature and rainfall, a pattern consistent with larger individuals occupying cooler and more productive parts of the landscape. Climate change forecasts, which predict warmer temperature and increased aridity, may result in reduced lizard biomass and decoupling of trophic interactions with potential implications for community organization and ecosystem function.


Subject(s)
Body Size/physiology , Lizards/anatomy & histology , Sex Characteristics , Animals , Climate , Ecosystem , Female , Geography , Lizards/physiology , Male , Phylogeny , South Australia
7.
PLoS One ; 9(9): e107126, 2014.
Article in English | MEDLINE | ID: mdl-25208298

ABSTRACT

Carbon stock change due to forest management and disturbance must be accounted for in UNFCCC national inventory reports and for signatories to the Kyoto Protocol. Impacts of disturbance on greenhouse gas (GHG) inventories are important for many countries with large forest estates prone to wildfires. Our objective was to measure changes in carbon stocks due to short-term combustion and to simulate longer-term carbon stock dynamics resulting from redistribution among biomass components following wildfire. We studied the impacts of a wildfire in 2009 that burnt temperate forest of tall, wet eucalypts in south-eastern Australia. Biomass combusted ranged from 40 to 58 tC ha(-1), which represented 6-7% and 9-14% in low- and high-severity fire, respectively, of the pre-fire total biomass carbon stock. Pre-fire total stock ranged from 400 to 1040 tC ha(-1) depending on forest age and disturbance history. An estimated 3.9 TgC was emitted from the 2009 fire within the forest region, representing 8.5% of total biomass carbon stock across the landscape. Carbon losses from combustion were large over hours to days during the wildfire, but from an ecosystem dynamics perspective, the proportion of total carbon stock combusted was relatively small. Furthermore, more than half the stock losses from combustion were derived from biomass components with short lifetimes. Most biomass remained on-site, although redistributed from living to dead components. Decomposition of these components and new regeneration constituted the greatest changes in carbon stocks over ensuing decades. A critical issue for carbon accounting policy arises because the timeframes of ecological processes of carbon stock change are longer than the periods for reporting GHG inventories for national emissions reductions targets. Carbon accounts should be comprehensive of all stock changes, but reporting against targets should be based on human-induced changes in carbon stocks to incentivise mitigation activities.


Subject(s)
Carbon/chemistry , Disasters , Fires , Models, Statistical , Trees/chemistry , Australia , Biomass , Carbon Cycle , Forests , Humans
8.
PLoS One ; 9(2): e89807, 2014.
Article in English | MEDLINE | ID: mdl-24587050

ABSTRACT

A holy grail of conservation is to find simple but reliable measures of environmental change to guide management. For example, particular species or particular habitat attributes are often used as proxies for the abundance or diversity of a subset of other taxa. However, the efficacy of such kinds of species-based surrogates and habitat-based surrogates is rarely assessed, nor are different kinds of surrogates compared in terms of their relative effectiveness. We use 30-year datasets on arboreal marsupials and vegetation structure to quantify the effectiveness of: (1) the abundance of a particular species of arboreal marsupial as a species-based surrogate for other arboreal marsupial taxa, (2) hollow-bearing tree abundance as a habitat-based surrogate for arboreal marsupial abundance, and (3) a combination of species- and habitat-based surrogates. We also quantify the robustness of species-based and habitat-based surrogates over time. We then use the same approach to model overall species richness of arboreal marsupials. We show that a species-based surrogate can appear to be a valid surrogate until a habitat-based surrogate is co-examined, after which the effectiveness of the former is lost. The addition of a species-based surrogate to a habitat-based surrogate made little difference in explaining arboreal marsupial abundance, but altered the co-occurrence relationship between species. Hence, there was limited value in simultaneously using a combination of kinds of surrogates. The habitat-based surrogate also generally performed significantly better and was easier and less costly to gather than the species-based surrogate. We found that over 30 years of study, the relationships which underpinned the habitat-based surrogate generally remained positive but variable over time. Our work highlights why it is important to compare the effectiveness of different broad classes of surrogates and identify situations when either species- or habitat-based surrogates are likely to be superior.


Subject(s)
Conservation of Natural Resources/methods , Ecosystem , Marsupialia/physiology , Trees , Animals , Biodiversity , Linear Models , Observation , Population Dynamics , Species Specificity , Victoria
9.
PLoS One ; 8(1): e53672, 2013.
Article in English | MEDLINE | ID: mdl-23320100

ABSTRACT

Species in many ecosystems are facing declines of key resources. If we are to understand and predict the effects of resource loss on natural populations, we need to understand whether and how the way animals use resources changes under resource decline. We investigated how the abundance of arboreal marsupials varies in response to a critical resource, hollow-bearing trees. Principally, we asked what mechanisms mediate the relationship between resources and abundance? Do animals use a greater or smaller proportion of the remaining resource, and is there a change in cooperative resource use (den sharing), as the availability of hollow trees declines? Analyses of data from 160 sites surveyed from 1997 to 2007 showed that hollow tree availability was positively associated with abundance of the mountain brushtail possum, the agile antechinus and the greater glider. The abundance of Leadbeater's possum was primarily influenced by forest age. Notably, the relationship between abundance and hollow tree availability was significantly less than 1:1 for all species. This was due primarily to a significant increase by all species in the proportional use of hollow-bearing trees where the abundance of this resource was low. The resource-sharing response was weaker and inconsistent among species. Two species, the mountain brushtail possum and the agile antechinus, showed significant but contrasting relationships between the number of animals per occupied tree and hollow tree abundance. The discrepancies between the species can be explained partly by differences in several aspects of the species' biology, including body size, types of hollows used and social behaviour as it relates to hollow use. Our results show that individual and social aspects of resource use are not always static in response to resource availability and support the need to account for dynamic resource use patterns in predictive models of animal distribution and abundance.


Subject(s)
Conservation of Natural Resources , Ecosystem , Animals , Behavior, Animal , Marsupialia , Models, Biological , Population Dynamics , Social Behavior , Trees , Trichosurus , Victoria
10.
PLoS One ; 7(10): e41864, 2012.
Article in English | MEDLINE | ID: mdl-23071486

ABSTRACT

Large trees with cavities provide critical ecological functions in forests worldwide, including vital nesting and denning resources for many species. However, many ecosystems are experiencing increasingly rapid loss of large trees or a failure to recruit new large trees or both. We quantify this problem in a globally iconic ecosystem in southeastern Australia--forests dominated by the world's tallest angiosperms, Mountain Ash (Eucalyptus regnans). Tree, stand and landscape-level factors influencing the death and collapse of large living cavity trees and the decay and collapse of dead trees with cavities are documented using a suite of long-term datasets gathered between 1983 and 2011. The historical rate of tree mortality on unburned sites between 1997 and 2011 was >14% with a mortality spike in the driest period (2006-2009). Following a major wildfire in 2009, 79% of large living trees with cavities died and 57-100% of large dead trees were destroyed on burned sites. Repeated measurements between 1997 and 2011 revealed no recruitment of any new large trees with cavities on any of our unburned or burned sites. Transition probability matrices of large trees with cavities through increasingly decayed condition states projects a severe shortage of large trees with cavities by 2039 that will continue until at least 2067. This large cavity tree crisis in Mountain Ash forests is a product of: (1) the prolonged time required (>120 years) for initiation of cavities; and (2) repeated past wildfires and widespread logging operations. These latter factors have resulted in all landscapes being dominated by stands ≤72 years and just 1.16% of forest being unburned and unlogged. We discuss how the features that make Mountain Ash forests vulnerable to a decline in large tree abundance are shared with many forest types worldwide.


Subject(s)
Ecosystem , Eucalyptus , Trees , Australia , Conservation of Natural Resources/methods , Fires
11.
Mol Ecol ; 21(3): 673-84, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21929555

ABSTRACT

Environmental disturbance is predicted to play a key role in the evolution of animal social behaviour. This is because disturbance affects key factors underlying social systems, such as demography, resource availability and genetic structure. However, because natural disturbances are unpredictable there is little information on their effects on social behaviour in wild populations. Here, we investigated how a major wildfire affected cooperation (sharing of hollow trees) by a hollow-dependent marsupial. We based two alternative social predictions on the impacts of fire on population density, genetic structure and resources. We predicted an adaptive social response from previous work showing that kin selection in den-sharing develops as competition for den resources increases. Thus, kin selection should occur in burnt areas because the fire caused loss of the majority of hollow-bearing trees, but no detectable mortality. Alternatively, fire may have a disruptive social effect, whereby postfire home range-shifts 'neutralize' fine-scale genetic structure, thereby removing opportunities for kin selection between neighbours. Both predictions occurred: the disruptive social effect in burnt habitat and the adaptive social response in adjacent unburnt habitat. The latter followed a massive demographic influx to unburnt 'refuge' habitat that increased competition for dens, leading to a density-related kin selection response. Our results show remarkable short-term plasticity of animal social behaviour and demonstrate how the social effects of disturbance extend into undisturbed habitat owing to landscape-scale demographic shifts. We predicted long-term changes in kinship-based cooperative behaviour resulting from the genetic and resource impacts of forecast changes to fire regimes in these forests.


Subject(s)
Cooperative Behavior , Disasters , Fires , Adaptation, Physiological , Animal Migration , Animals , Demography , Ecosystem , Marsupialia , Sexual Behavior, Animal
12.
PLoS One ; 6(8): e22952, 2011.
Article in English | MEDLINE | ID: mdl-21826221

ABSTRACT

BACKGROUND: Big environmental disturbances have big ecological effects, yet these are not always what we might expect. Understanding the proximate effects of major disturbances, such as severe wildfires, on individuals, populations and habitats will be essential for understanding how predicted future increases in the frequency of such disturbances will affect ecosystems. However, researchers rarely have access to data from immediately before and after such events. Here we report on the effects of a severe and extensive forest wildfire on mortality, reproductive output and availability of key shelter resources for an arboreal marsupial. We also investigated the behavioural response of individuals to changed shelter resource availability in the post-fire environment. METHODOLOGY/PRINCIPAL FINDINGS: We fitted proximity-logging radiotransmitters to mountain brushtail possums (Trichosurus cunninghami) before, during and after the 2009 wildfires in Victoria, Australia. Surprisingly, we detected no mortality associated with the fire, and despite a significant post-fire decrease in the proportion of females carrying pouch young in the burnt area, there was no short-term post-fire population decline. The major consequence of this fire for mountain brushtail possums was the loss of over 80% of hollow-bearing trees. The types of trees preferred as shelter sites (highly decayed dead standing trees) were those most likely to collapse after fire. Individuals adapted to resource decline by being more flexible in resource selection after the fire, but not by increased resource sharing. CONCLUSIONS/SIGNIFICANCE: Despite short-term demographic resilience and behavioural adaptation following this fire, the major loss of decayed hollow trees suggests the increased frequency of stand-replacing wildfires predicted under climate change will pose major challenges for shelter resource availability for hollow-dependent fauna. Hollow-bearing trees are typically biological legacies of previous forest generations in post-fire regrowth forests but will cease to be recruited to future regrowth forests if the interval between severe fires becomes too rapid for hollow formation.


Subject(s)
Fires , Marsupialia , Trees , Animals , Female
13.
Proc Biol Sci ; 278(1719): 2768-76, 2011 Sep 22.
Article in English | MEDLINE | ID: mdl-21288953

ABSTRACT

Animal social behaviour is not static with regard to environmental change. Flexibility in cooperative resource use may be an important response to resource decline, mediating the impacts of resource availability on fitness and demography. In forest ecosystems, hollow trees are key den resources for many species, but are declining worldwide owing to forestry. Altered patterns of den sharing may mediate the effects of the decline of this resource. We studied den-sharing interactions among hollow-dependent Australian mountain brushtail possums to investigate how spatial variation in hollow tree availability affects resource sharing and kin selection. Under reduced den availability, individuals used fewer dens and shared them less often. This suggests increased territoriality in the presence of resource competition. Further, there was a switch from kin avoidance to kin preference with decreasing hollow tree availability. This was driven primarily by a change in den sharing among siblings. The inclusive fitness benefits of den sharing with kin are likely to increase under resource-limiting conditions, but are potentially outweighed by the benefits of associating with non-relatives (avoidance of inbreeding or pathogen transmission) where dens are abundant. We discuss how predictions from social evolutionary theory can contribute to understanding animal responses to landscape change.


Subject(s)
Cooperative Behavior , Eucalyptus , Marsupialia/physiology , Territoriality , Trees , Adaptation, Physiological , Animals , Australia , Behavior, Animal , Female , Inbreeding , Male , Siblings , Social Behavior
SELECTION OF CITATIONS
SEARCH DETAIL
...