Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol ; 209(6): 1128-1137, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35977798

ABSTRACT

The tightly linked A and E blood alloantigen systems are 2 of 13 blood systems identified in chickens. Reported herein are studies showing that the genes encoding A and E alloantigens map within or near to the chicken regulator of complement activation (RCA) gene cluster, a region syntenic with the human RCA. Genome-wide association studies, sequence analysis, and sequence-derived single-nucleotide polymorphism information for known A and/or E system alleles show that the most likely candidate gene for the A blood system is C4BPM gene (complement component 4 binding protein, membrane). Cosegregation of single-nucleotide polymorphism-defined C4BPM haplotypes and blood system A alleles defined by alloantisera provide a link between chicken blood system A and C4BPM. The best match for the E blood system is the avian equivalent of FCAMR (Fc fragment of IgA and IgM receptor). C4BPM is located within the chicken RCA on chicken microchromosome 26 and is separated from FCAMR by 89 kbp. The genetic variation observed at C4BPM and FCAMR could affect the chicken complement system and differentially guide immune responses to infectious diseases.


Subject(s)
Chickens , Genome-Wide Association Study , Animals , Chickens/genetics , Complement Activation/genetics , Complement C4 , Genetic Variation , Immunoglobulin A/genetics , Immunoglobulin Fc Fragments/genetics , Isoantigens , Membrane Proteins/genetics , Polymorphism, Single Nucleotide
2.
Genes (Basel) ; 9(11)2018 Nov 19.
Article in English | MEDLINE | ID: mdl-30463235

ABSTRACT

Newcastle disease is considered the number one disease constraint to poultry production in low and middle-income countries, however poultry that is raised in resource-poor areas often experience multiple environmental challenges. Heat stress has a negative impact on production, and immune response to pathogens can be negatively modulated by heat stress. Candidate genes and regions chosen for this study were based on previously reported associations with response to immune stimulants, pathogens, or heat, including: TLR3, TLR7, MX, MHC-B (major histocompatibility complex, gene complex), IFI27L2, SLC5A1, HSPB1, HSPA2, HSPA8, IFRD1, IL18R1, IL1R1, AP2A2, and TOLLIP. Chickens of a commercial egg-laying line were infected with a lentogenic strain of NDV (Newcastle disease virus); half the birds were maintained at thermoneutral temperature and the other half were exposed to high ambient temperature before the NDV challenge and throughout the remainder of the study. Phenotypic responses to heat, to NDV, or to heat + NDV were measured. Selected SNPs (single nucleotide polymorphisms) within 14 target genes or regions were genotyped; and genotype effects on phenotypic responses to NDV or heat + NDV were tested in each individual treatment group and the combined groups. Seventeen significant haplotype effects, among seven genes and seven phenotypes, were detected for response to NDV or heat or NDV + heat. These findings identify specific genetic variants that are associated with response to heat and/or NDV which may be useful in the genetic improvement of chickens to perform favorably when faced with pathogens and heat stress.

3.
Genet Sel Evol ; 48: 1, 2016 Jan 07.
Article in English | MEDLINE | ID: mdl-26743767

ABSTRACT

BACKGROUND: The major histocompatibility complex (MHC) is present within the genomes of all jawed vertebrates. MHC genes are especially important in regulating immune responses, but even after over 80 years of research on the MHC, much remains to be learned about how it influences adaptive and innate immune responses. In most species, the MHC is highly polymorphic and polygenic. Strong and highly reproducible associations are established for chicken MHC-B haplotypes in a number of infectious diseases. Here, we report (1) the development of a high-density SNP (single nucleotide polymorphism) panel for MHC-B typing that encompasses a 209,296 bp region in which 45 MHC-B genes are located, (2) how this panel was used to define chicken MHC-B haplotypes within a large number of lines/breeds and (3) the detection of recombinants which contributes to the observed diversity. METHODS: A SNP panel was developed for the MHC-B region between the BG2 and CD1A1 genes. To construct this panel, each SNP was tested in end-point read assays on more than 7500 DNA samples obtained from inbred and commercially used egg-layer lines that carry known and novel MHC-B haplotypes. One hundred and one SNPs were selected for the panel. Additional breeds and experimentally-derived lines, including lines that carry MHC-B recombinant haplotypes, were then genotyped. RESULTS: MHC-B haplotypes based on SNP genotyping were consistent with the MHC-B haplotypes that were assigned previously in experimental lines that carry B2, B5, B12, B13, B15, B19, B21, and B24 haplotypes. SNP genotyping resulted in the identification of 122 MHC-B haplotypes including a number of recombinant haplotypes, which indicate that crossing-over events at multiple locations within the region lead to the production of new MHC-B haplotypes. Furthermore, evidence of gene duplication and deletion was found. CONCLUSIONS: The chicken MHC-B region is highly polymorphic across the surveyed 209-kb region that contains 45 genes. Our results expand the number of identified haplotypes and provide insights into the contribution of recombination events to MHC-B diversity including the identification of recombination hotspots and an estimation of recombination frequency.


Subject(s)
Chickens/genetics , Major Histocompatibility Complex/genetics , Polymorphism, Single Nucleotide , Recombination, Genetic , Animals , Haplotypes , Selection, Genetic
4.
Immunogenetics ; 58(5-6): 407-21, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16738938

ABSTRACT

The chicken major histocompatibility complex (MHC) is commonly defined by serologic reactions of erythrocytes with antibodies specific to the highly polymorphic MHC class I (BF) and MHC class IV (BG) antigens. The microsatellite marker LEI0258 is known to be physically located within the MHC, between the BG and BF regions. DNA from various serologically defined MHC haplotypes was amplified by polymerase chain reaction with primers surrounding this marker. Twenty-six distinctive allele sizes were identified. Some serologically well-defined MHC haplotypes shared a common LEI0258 allele size but could be distinguished either by the addition of information from another nearby marker (MCW0371) or by small indels or single nucleotide polymorphism (SNP) differences between the alleles. The association between LEI0258 allele and serologically defined MHC haplotype was very consistent for the same haplotype from multiple sources. Sequence information for the region defined by LEI0258 was obtained for 51 different haplotypes. Two internal repeats whose lengths were 13 and 12 bp, respectively, are the primary basis for allelic variability. Allele size variation ranges from 182 to 552 bp. Four indels and five SNPs in the surrounding sequence provide additional means for distinguishing alleles. Typing with LEI0258 and MCW0371 will be useful in identifying MHC haplotypes in outbred populations of chickens particularly for the initial development of serological reagents.


Subject(s)
Chickens/immunology , Histocompatibility Antigens/genetics , Major Histocompatibility Complex/genetics , Alleles , Animals , Chickens/genetics , Gene Frequency , Genotype , Histocompatibility Antigens/classification , Molecular Sequence Data , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...