Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biomed Imaging ; 1(1): 30-39, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37122830

ABSTRACT

Plasmonic nanoantennas have considerably stronger polarization-dependent optical properties than their molecular counterparts, inspiring photonic platforms for enhancing molecular dichroism and providing fundamental insight into light-matter interactions. One such insight is that even achiral nanoparticles can yield strong optical activity when they are asymmetrically illuminated from a single oblique angle instead of evenly illuminated. This effect, called extrinsic chirality, results from the overall chirality of the experimental geometry and strongly depends on the orientation of the incident light. Although extrinsic chirality has been well-characterized, an analogous effect involving linear polarization sensitivity has not yet been discussed. In this study, we investigate the differential scattering of rotationally symmetric chiral plasmonic pinwheels when asymmetrically irradiated with linearly polarized light. Despite their high rotational symmetry, we observe substantial linear differential scattering that is maintained over all pinwheel orientations. We demonstrate that this orientation-independent linear differential scattering arises from the broken mirror and rotational symmetries of our overall experimental geometry. Our results underscore the necessity of considering both the rotational symmetry of the nanoantenna and the experimental setup, including illumination direction and angle, when performing plasmon-enhanced chiroptical characterizations. Our results demonstrate spectroscopic signatures of an effect analogous to extrinsic chirality for linear polarizations.

2.
ACS Nano ; 15(10): 15538-15566, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34609836

ABSTRACT

Chiral nanophotonic materials are promising candidates for biosensing applications because they focus light into nanometer dimensions, increasing their sensitivity to the molecular signatures of their surroundings. Recent advances in nanomaterial-enhanced chirality sensing provide detection limits as low as attomolar concentrations (10-18 M) for biomolecules and are relevant to the pharmaceutical industry, forensic drug testing, and medical applications that require high sensitivity. Here, we review the development of chiral nanomaterials and their application for detecting biomolecules, supramolecular structures, and other environmental stimuli. We discuss superchiral near-field generation in both dielectric and plasmonic metamaterials that are composed of chiral or achiral nanostructure arrays. These materials are also applicable for enhancing chiroptical signals from biomolecules. We review the plasmon-coupled circular dichroism mechanism observed for plasmonic nanoparticles and discuss how hotspot-enhanced plasmon-coupled circular dichroism applies to biosensing. We then review single-particle spectroscopic methods for achieving the ultimate goal of single-molecule chirality sensing. Finally, we discuss future outlooks of nanophotonic chiral systems.


Subject(s)
Nanoparticles , Nanostructures , Circular Dichroism , Nanotechnology
3.
Proc Natl Acad Sci U S A ; 117(28): 16143-16148, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32601234

ABSTRACT

Matter's sensitivity to light polarization is characterized by linear and circular polarization effects, corresponding to the system's anisotropy and handedness, respectively. Recent investigations into the near-field properties of evanescent waves have revealed polarization states with out-of-phase transverse and longitudinal oscillations, resulting in trochoidal, or cartwheeling, field motion. Here, we demonstrate matter's inherent sensitivity to the direction of the trochoidal field and name this property trochoidal dichroism. We observe trochoidal dichroism in the differential excitation of bonding and antibonding plasmon modes for a system composed of two coupled dipole scatterers. Trochoidal dichroism constitutes the observation of a geometric basis for polarization sensitivity that fundamentally differs from linear and circular dichroism. It could also be used to characterize molecular systems, such as certain light-harvesting antennas, with cartwheeling charge motion upon excitation.

4.
J Phys Chem A ; 124(25): 5262-5270, 2020 Jun 25.
Article in English | MEDLINE | ID: mdl-32463671

ABSTRACT

General methods to achieve better physical insight about nanoparticle aggregation and assembly are needed because of the potential role of aggregation in a wide range of materials, environmental, and biological outcomes. Scanning electron microscopy (SEM) is fast and affordable compared to transmission electron microscopy, but SEM micrographs lack contrast and resolution due to lower beam energy, topographic contrast, edge effects, and charging. We present a new segmentation algorithm called SEMseg that is robust to the challenges inherent in SEM micrograph analysis and demonstrate its utility for analyzing gold (Au) nanorod aggregates. SEMseg not only supports nanoparticle size analysis for dispersed nanoparticles, but also discriminates between nanoparticles within an aggregate. We compare our algorithm to those incorporated into the commonly used software ImageJ and demonstrate improved segmentation of aggregate structures. New physical insight about aggregation is demonstrated by the introduction of an order parameter describing side-by-side structure in nanoparticle aggregates. We also present the segmentation and fitting algorithms included in SEMseg within a user-friendly graphical user interface. The resulting code is provided with an open-source interface to provide quantitative image processing tools for researchers to characterize both dispersed nanoparticles and nanoparticle assemblies in SEM micrographs with high throughput.

5.
J Am Chem Soc ; 141(49): 19336-19341, 2019 12 11.
Article in English | MEDLINE | ID: mdl-31724853

ABSTRACT

Circular dichroism (CD) from hybrid complexes of plasmonic nanostructures and chiral molecules has recently attracted significant interest. However, the hierarchical chiral self-assembly of molecules on surfaces of metal nanostructures has remained challenging. As a result, a deep understanding of plasmon-exciton coupling between surface plasmons and chiral collective molecular excitations has not been achieved. In particular, the critical impact of resonant plasmon-exciton coupling within the hybrid is unclear. Here, we employed DNA-templated strategies to control the chiral self-assembly of achiral chromophores with rationally tuned exciton transitions on gold nanosphere (AuNP) or gold nanorod (AuNR) surfaces. Unlike many previous chiral plasmonic hybrids utilizing chiral biomolecules with CD signals in the UV range, we designed structures with the chiral excitonic resonances at visible wavelengths. The constructed hybrid complexes displayed strong chiroptical activity that depends on the spectral overlap between the chiral collective molecular excitations and the plasmon resonances. We find that when spectral overlap is optimized, the molecular CD signal originating from the chiral self-assemblies of chromophores was strongly enhanced (maximum enhancement of nearly an order of magnitude) and a plasmonic CD signal was induced. Surprisingly, the sign of the molecular CD was reversed despite different self-assembly mechanisms of the Au nanoparticle-chromophore hybrids. Our results provide new insight into plasmonic CD enhancements and will inspire further studies on chiral light-matter interactions in strongly coupled plasmonic-excitonic systems.


Subject(s)
Circular Dichroism , DNA/chemistry , Fluorescent Dyes/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Nanotubes/chemistry , Surface Plasmon Resonance
6.
Science ; 365(6460): 1475-1478, 2019 09 27.
Article in English | MEDLINE | ID: mdl-31604278

ABSTRACT

Plasmon-coupled circular dichroism has emerged as a promising approach for ultrasensitive detection of biomolecular conformations through coupling between molecular chirality and surface plasmons. Chiral nanoparticle assemblies without chiral molecules present also have large optical activities. We apply single-particle circular differential scattering spectroscopy coupled with electron imaging and simulations to identify both structural chirality of plasmonic aggregates and plasmon-coupled circular dichroism induced by chiral proteins. We establish that both chiral aggregates and just a few proteins in interparticle gaps of achiral assemblies are responsible for the ensemble signal, but single nanoparticles do not contribute. We furthermore find that the protein plays two roles: It transfers chirality to both chiral and achiral plasmonic substrates, and it is also responsible for the chiral three-dimensional assembly of nanorods. Understanding these underlying factors paves the way toward sensing the chirality of single biomolecules.


Subject(s)
Circular Dichroism , Nanotubes/chemistry , Protein Conformation , Serum Albumin, Bovine/chemistry , Cryoelectron Microscopy , Gold , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Spectrum Analysis, Raman
7.
ACS Nano ; 12(11): 11657-11663, 2018 Nov 27.
Article in English | MEDLINE | ID: mdl-30403839

ABSTRACT

For applications seeking to realize on-chip polarization-discriminating nanoantennas, efficient energy conversion from surface waves to far-field radiation is desirable. However, the response of individual nanoantennas to the particular polarization states achievable in surface waves, such as evanescent fields, has not yet been thoroughly investigated. Here, we report the giant modulation of visible light scattering from achiral gold half-rings when switching between evanescent surface wave excitation produced from the total internal reflection of left-handed and right-handed circularly polarized light. The effect is driven by a differing relative phase between the in-plane transverse and longitudinal field oscillations of the evanescent wave depending on the incident light handedness. Because longitudinal field oscillations are not found in free-space excitation, this presents a fundamentally different mechanism for chiroptical responses as traditional mechanisms for circular dichroism only account for purely transversal field oscillations. Although the half-ring scattering modulation is dependent on the wave-vector orientation, an orientation invariant response is also realized in planar chiral nanoantennas composed of 8 half-rings in a rotationally symmetric arrangement, with up to 50% scattering modulation observed at 725 nm. Although both structures are found to produce scattering modulation when switching the handedness of free-space light, the distinct polarization properties of evanescent fields are shown to be strictly required to observe giant scattering modulation. These results ultimately deepen our understanding of the range of possible chiroptical effects in light-matter interactions.

8.
RSC Adv ; 9(1): 389-396, 2018 Dec 19.
Article in English | MEDLINE | ID: mdl-35521593

ABSTRACT

Hollow noble metal nanoparticles are of growing interest due to their localized surface plasmon resonance (LSPR) tunability. A popular synthetic approach is galvanic replacement which can be coupled with a co-reducer. Here, we describe the control over morphology, and therefore over plasmonic properties including energy, bandwidth, extinction and scattering intensity, offered by co-reduction galvanic replacement. This study indicates that whereas the variation of atomic stoichiometry using the co-reduction method described in this work offers a rather modest tuning range of LSPR energy when compared to traditional galvanic replacement, it nevertheless has a profound effect on shell thickness, which imparts a degree of control over scattering intensity and sensitivity to changes in the dielectric constant of the surrounding environment. Therefore, in this context particle size and gold content become two design parameters that can be used to independently tune LSPR energy and intensity.

9.
Toxicol Rep ; 2: 1171-1181, 2015.
Article in English | MEDLINE | ID: mdl-28962459

ABSTRACT

Over the last decade, concerns have been raised about potential respiratory health effects associated with occupational exposure to the flavoring additives diacetyl and 2,3-pentanedione. Both of these diketones are also natural components of many foods and beverages, including roasted coffee. To date, there are no published studies characterizing workplace exposures to these diketones during commercial roasting and grinding of unflavored coffee beans. In this study, we measured naturally occurring diacetyl, 2,3-pentanedione, and respirable dust at a facility that roasts and grinds coffee beans with no added flavoring agents. Sampling was conducted over the course of three roasting batches and three grinding batches at varying distances from a commercial roaster and grinder. The three batches consisted of lightly roasted soft beans, lightly roasted hard beans, and dark roasted hard beans. Roasting occurred for 37 to 41 min, and the grinding process took between 8 and 11 min. Diacetyl, 2,3-pentanedione, and respirable dust concentrations measured during roasting ranged from less than the limit of detection (

SELECTION OF CITATIONS
SEARCH DETAIL
...