Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 24(1): 698, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37990161

ABSTRACT

BACKGROUND: Avian pathogenic Escherichia coli (APEC) are the causative agents of colibacillosis in chickens, a disease which has significant economic impact on the poultry industry. Large plasmids detected in APEC are known to contribute to strain diversity for pathogenicity and antimicrobial resistance, but there could be other plasmids that are missed in standard analysis. In this study, we determined the impact of sequencing and assembly factors for the detection of plasmids in an E. coli whole genome sequencing project. RESULTS: Hybrid assembly (Illumina and Nanopore) combined with plasmid DNA extractions allowed for detection of the greatest number of plasmids in E. coli, as detected by MOB-suite software. In total, 79 plasmids were identified in 19 E. coli isolates. Hybrid assemblies were robust and consistent in quality regardless of sequencing kit used or if long reads were filtered or not. In contrast, long read only assemblies were more variable and influenced by sequencing and assembly parameters. Plasmid DNA extractions allowed for the detection of physically smaller plasmids, but when averaged over 19 isolates did not significantly change the overall number of plasmids detected. CONCLUSIONS: Hybrid assembly can be reliably used to detect plasmids in E. coli, especially if researchers are focused on large plasmids containing antimicrobial resistance genes and virulence factors. If the goal is comprehensive detection of all plasmids, particularly if smaller sized vectors are desired for biotechnology applications, the addition of plasmid DNA extractions to hybrid assemblies is prudent. Long read sequencing is sufficient to detect many plasmids in E. coli, however, it is more prone to errors when expanded to analyze a large number of isolates.


Subject(s)
Anti-Infective Agents , Escherichia coli Infections , Nanopores , Poultry Diseases , Animals , Escherichia coli , Chickens/genetics , Plasmids/genetics , Escherichia coli Infections/veterinary , High-Throughput Nucleotide Sequencing , DNA
2.
Microbiol Resour Announc ; 12(5): e0011023, 2023 May 17.
Article in English | MEDLINE | ID: mdl-37098978

ABSTRACT

Escherichia coli infections in poultry cause significant morbidity and economic losses for producers each year. In a 3-year period, we collected and sequenced the whole genomes of E. coli disease isolates (n = 91), isolates from presumed healthy birds (n = 61), and isolates from 8 barn sites (n = 93) on broiler farms in Saskatchewan.

3.
Nucleic Acids Res ; 51(D1): D690-D699, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36263822

ABSTRACT

The Comprehensive Antibiotic Resistance Database (CARD; card.mcmaster.ca) combines the Antibiotic Resistance Ontology (ARO) with curated AMR gene (ARG) sequences and resistance-conferring mutations to provide an informatics framework for annotation and interpretation of resistomes. As of version 3.2.4, CARD encompasses 6627 ontology terms, 5010 reference sequences, 1933 mutations, 3004 publications, and 5057 AMR detection models that can be used by the accompanying Resistance Gene Identifier (RGI) software to annotate genomic or metagenomic sequences. Focused curation enhancements since 2020 include expanded ß-lactamase curation, incorporation of likelihood-based AMR mutations for Mycobacterium tuberculosis, addition of disinfectants and antiseptics plus their associated ARGs, and systematic curation of resistance-modifying agents. This expanded curation includes 180 new AMR gene families, 15 new drug classes, 1 new resistance mechanism, and two new ontological relationships: evolutionary_variant_of and is_small_molecule_inhibitor. In silico prediction of resistomes and prevalence statistics of ARGs has been expanded to 377 pathogens, 21,079 chromosomes, 2,662 genomic islands, 41,828 plasmids and 155,606 whole-genome shotgun assemblies, resulting in collation of 322,710 unique ARG allele sequences. New features include the CARD:Live collection of community submitted isolate resistome data and the introduction of standardized 15 character CARD Short Names for ARGs to support machine learning efforts.


Subject(s)
Data Curation , Databases, Factual , Drug Resistance, Microbial , Machine Learning , Anti-Bacterial Agents/pharmacology , Genes, Bacterial , Likelihood Functions , Software , Molecular Sequence Annotation
4.
Front Microbiol ; 13: 841516, 2022.
Article in English | MEDLINE | ID: mdl-35783405

ABSTRACT

The global poultry industry has grown to the extent that the number of chickens now well exceeds the number of humans on Earth. Escherichia coli infections in poultry cause significant morbidity and economic losses for producers each year. We obtained 94 E. coli isolates from 12 colibacillosis outbreaks on Saskatchewan farms and screened them for antimicrobial resistance and biofilm formation. Fifty-six isolates were from broilers with confirmed colibacillosis, and 38 isolates were from healthy broilers in the same flocks (cecal E. coli). Resistance to penicillins, tetracyclines, and aminoglycosides was common in isolates from all 12 outbreaks, while cephalosporin resistance varied by outbreak. Most E. coli were able to form biofilms in at least one of three growth media (1/2 TSB, M63, and BHI broth). There was an overall trend that disease-causing E. coli had more antibiotic resistance and were more likely to form biofilms in nutrient-rich media (BHI) as compared to cecal strains. However, on an individual strain basis, there was no correlation between antimicrobial resistance and biofilm formation. The 21 strongest biofilm forming strains consisted of both disease-causing and cecal isolates that were either drug resistant or susceptible. Draft whole genome sequencing indicated that many known antimicrobial resistance genes were present on plasmids, with disease-causing E. coli having more plasmids on average than their cecal counterparts. We tested four common disinfectants for their ability to kill 12 of the best biofilm forming strains. All disinfectants killed single cells effectively, but biofilm cells were more resistant, although the difference was less pronounced for the disinfectants that have multiple modes of action. Our results indicate that there is significant diversity and complexity in E. coli poultry isolates, with different lifestyle pressures affecting disease-causing and cecal isolates.

5.
Infect Immun ; 89(4)2021 03 17.
Article in English | MEDLINE | ID: mdl-33468583

ABSTRACT

Nontyphoidal Salmonella (NTS) strains are associated with gastroenteritis worldwide but are also the leading cause of bacterial bloodstream infections in sub-Saharan Africa. The invasive NTS (iNTS) strains that cause bloodstream infections differ from standard gastroenteritis-causing strains by >700 single-nucleotide polymorphisms (SNPs). These SNPs are known to alter metabolic pathways and biofilm formation and to contribute to serum resistance and are thought to signify iNTS strains becoming human adapted, similar to typhoid fever-causing Salmonella strains. Identifying SNPs that contribute to invasion or increased virulence has been more elusive. In this study, we identified a SNP in the cache 1 signaling domain of diguanylate cyclase STM1987 in the invasive Salmonella enterica serovar Typhimurium type strain D23580. This SNP was conserved in 118 other iNTS strains analyzed and was comparatively absent in global S Typhimurium isolates associated with gastroenteritis. STM1987 catalyzes the formation of bis-(3',5')-cyclic dimeric GMP (c-di-GMP) and is proposed to stimulate production of cellulose independent of the master biofilm regulator CsgD. We show that the amino acid change in STM1987 leads to a 10-fold drop in cellulose production and increased fitness in a mouse model of acute infection. Reduced cellulose production due to the SNP led to enhanced survival in both murine and human macrophage cell lines. In contrast, loss of CsgD-dependent cellulose production did not lead to any measurable change in in vivo fitness. We hypothesize that the SNP in stm1987 represents a pathoadaptive mutation for iNTS strains.


Subject(s)
Bacterial Proteins/genetics , Genetic Fitness , Polymorphism, Single Nucleotide , Protein Interaction Domains and Motifs , Salmonella Infections/microbiology , Salmonella/genetics , Animals , Bacterial Proteins/metabolism , Humans , Macrophages/immunology , Macrophages/metabolism , Macrophages/microbiology , Mice , Microbial Viability , Salmonella/metabolism , Salmonella typhimurium/genetics , Salmonella typhimurium/pathogenicity , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...