Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
JCI Insight ; 6(12)2021 06 22.
Article in English | MEDLINE | ID: mdl-34032639

ABSTRACT

The presence of an immunosuppressive tumor microenvironment is a major obstacle in the success of cancer immunotherapies. Because extracellular matrix components can shape the microenvironment, we investigated the role of matrix metalloproteinase 2 (MMP2) in melanoma tumorigenesis. We found that MMP2 signals proinflammatory pathways on antigen presenting cells, and this requires both TLR2 and TLR4. B16 melanoma cells that express MMP2 at baseline have slower kinetics in Tlr2-/- Tlr4-/- mice, implicating MMP2 in promoting tumor growth. Indeed, Mmp2 overexpression in B16 cells potentiated rapid tumor growth, which was accompanied by reduced intratumoral cytolytic cells and increased M2 macrophages. In contrast, knockdown of Mmp2 slowed tumor growth and enhanced T cell proliferation and NK cell recruitment. Finally, we found that these effects of MMP2 are mediated through dysfunctional DC-T cell cross-talk as they are lost in Batf3-/- and Rag2-/- mice. These findings provide insights into the detrimental role of endogenous alarmins like MMP2 in modulating immune responses in the tumor microenvironment.


Subject(s)
Matrix Metalloproteinase 2/immunology , Toll-Like Receptors/immunology , Tumor Microenvironment/immunology , Animals , Cells, Cultured , Female , HEK293 Cells , Humans , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Mice , Mice, Inbred C57BL , Toll-Like Receptors/genetics , Toll-Like Receptors/metabolism
2.
Cell ; 183(6): 1634-1649.e17, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33259803

ABSTRACT

Microsatellite instability-high (MSI-H) tumors are characterized by high tumor mutation burden and responsiveness to checkpoint blockade. We identified tumor-specific frameshifts encoding multiple epitopes that originated from indel mutations shared among patients with MSI-H endometrial, colorectal, and stomach cancers. Epitopes derived from these shared frameshifts have high population occurrence rates, wide presence in many tumor subclones, and are predicted to bind to the most frequent MHC alleles in MSI-H patient cohorts. Neoantigens arising from these mutations are distinctly unlike self and viral antigens, signifying novel groups of potentially highly immunogenic tumor antigens. We further confirmed the immunogenicity of frameshift peptides in T cell stimulation experiments using blood mononuclear cells isolated from both healthy donors and MSI-H cancer patients. Our study uncovers the widespread occurrence and strong immunogenicity of tumor-specific antigens derived from shared frameshift mutations in MSI-H cancer and Lynch syndrome patients, suitable for the design of common "off-the-shelf" cancer vaccines.


Subject(s)
Epitopes/genetics , Epitopes/immunology , Frameshift Mutation/genetics , Microsatellite Instability , Neoplasms/genetics , Neoplasms/immunology , Amino Acid Sequence , Antigens, Neoplasm/immunology , Antigens, Viral/immunology , Cell Line, Tumor , DNA Mutational Analysis , Gene Expression Regulation, Neoplastic , Genome, Human , Humans , Immunotherapy , Mutation, Missense/genetics , Neoplasms/therapy , Peptides/chemistry , Peptides/immunology , Survival Analysis , T-Lymphocytes/immunology
4.
PLoS One ; 15(10): e0240169, 2020.
Article in English | MEDLINE | ID: mdl-33027304

ABSTRACT

We have created the immunodeficient SRG rat, a Sprague-Dawley Rag2/Il2rg double knockout that lacks mature B cells, T cells, and circulating NK cells. This model has been tested and validated for use in oncology (SRG OncoRat®). The SRG rat demonstrates efficient tumor take rates and growth kinetics with different human cancer cell lines and PDXs. Although multiple immunodeficient rodent strains are available, some important human cancer cell lines exhibit poor tumor growth and high variability in those models. The VCaP prostate cancer model is one such cell line that engrafts unreliably and grows irregularly in existing models but displays over 90% engraftment rate in the SRG rat with uniform growth kinetics. Since rats can support much larger tumors than mice, the SRG rat is an attractive host for PDX establishment. Surgically resected NSCLC tissue from nine patients were implanted in SRG rats, seven of which engrafted and grew for an overall success rate of 78%. These developed into a large tumor volume, over 20,000 mm3 in the first passage, which would provide an ample source of tissue for characterization and/or subsequent passage into NSG mice for drug efficacy studies. Molecular characterization and histological analyses were performed for three PDX lines and showed high concordance between passages 1, 2 and 3 (P1, P2, P3), and the original patient sample. Our data suggest the SRG OncoRat is a valuable tool for establishing PDX banks and thus serves as an alternative to current PDX mouse models hindered by low engraftment rates, slow tumor growth kinetics, and multiple passages to develop adequate tissue banks.


Subject(s)
Interleukin Receptor Common gamma Subunit/genetics , Neoplasms, Experimental/pathology , Xenograft Model Antitumor Assays/methods , Animals , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Gene Deletion , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Neoplasms, Experimental/genetics , Rats , Rats, Sprague-Dawley , Xenograft Model Antitumor Assays/standards
5.
Cancer Immunol Res ; 8(1): 70-80, 2020 01.
Article in English | MEDLINE | ID: mdl-31699709

ABSTRACT

Given its ability to induce both humoral and cellular immune responses, NY-ESO-1 has been considered a suitable antigen for a cancer vaccine. Despite promising results from early-phase clinical studies in patients with melanoma, NY-ESO-1 vaccine immunotherapy has not been widely investigated in larger trials; consequently, many questions remain as to the optimal vaccine formulation, predictive biomarkers, and sequencing and timing of vaccines in melanoma treatment. We conducted an adjuvant phase I/II clinical trial in high-risk resected melanoma to optimize the delivery of poly-ICLC, a TLR-3/MDA-5 agonist, as a component of vaccine formulation. A phase I dose-escalation part was undertaken to identify the MTD of poly-ICLC administered in combination with NY-ESO-1 and montanide. This was followed by a randomized phase II part investigating the MTD of poly-ICLC with NY-ESO-1 with or without montanide. The vaccine regimens were generally well tolerated, with no treatment-related grade 3/4 adverse events. Both regimens induced integrated NY-ESO-1-specific CD4+ T-cell and humoral responses. CD8+ T-cell responses were mainly detected in patients receiving montanide. T-cell avidity toward NY-ESO-1 peptides was higher in patients vaccinated with montanide. In conclusion, NY-ESO-1 protein in combination with poly-ICLC is safe, well tolerated, and capable of inducing integrated antibody and CD4+ T-cell responses in most patients. Combination with montanide enhances antigen-specific T-cell avidity and CD8+ T-cell cross-priming in a fraction of patients, indicating that montanide contributes to the induction of specific CD8+ T-cell responses to NY-ESO-1.


Subject(s)
Antigens, Neoplasm/administration & dosage , Cancer Vaccines/therapeutic use , Carboxymethylcellulose Sodium/analogs & derivatives , Immunity, Cellular/immunology , Immunity, Humoral/immunology , Mannitol/analogs & derivatives , Melanoma/immunology , Membrane Proteins/administration & dosage , Oleic Acids/administration & dosage , Poly I-C/administration & dosage , Polylysine/analogs & derivatives , Adjuvants, Immunologic/administration & dosage , Aged , Antigens, Neoplasm/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/immunology , Carboxymethylcellulose Sodium/administration & dosage , Cross-Priming/immunology , Female , Humans , Interferon Inducers/administration & dosage , Male , Mannitol/administration & dosage , Melanoma/therapy , Membrane Proteins/immunology , Middle Aged , Patient Safety , Polylysine/administration & dosage , Skin Neoplasms/immunology , Skin Neoplasms/therapy , Treatment Outcome
6.
Mol Cancer Ther ; 17(11): 2481-2489, 2018 11.
Article in English | MEDLINE | ID: mdl-30206106

ABSTRACT

The rat is the preferred model for toxicology studies, and it offers distinctive advantages over the mouse as a preclinical research model including larger sample size collection, lower rates of drug clearance, and relative ease of surgical manipulation. An immunodeficient rat would allow for larger tumor size development, prolonged dosing and drug efficacy studies, and preliminary toxicologic testing and pharmacokinetic/pharmacodynamic studies in the same model animal. Here, we created an immunodeficient rat with a functional deletion of the Recombination Activating Gene 2 (Rag2) gene, using genetically modified spermatogonial stem cells (SSC). We targeted the Rag2 gene in rat SSCs with TALENs and transplanted these Rag2-deficient SSCs into sterile recipients. Offspring were genotyped, and a founder with a 27 bp deletion mutation was identified and bred to homozygosity to produce the Sprague-Dawley Rag2 - Rag2 tm1Hera (SDR) knockout rat. We demonstrated that SDR rat lacks mature B and T cells. Furthermore, the SDR rat model was permissive to growth of human glioblastoma cell line subcutaneously resulting in successful growth of tumors. In addition, a human KRAS-mutant non-small cell lung cancer cell line (H358), a patient-derived high-grade serous ovarian cancer cell line (OV81), and a patient-derived recurrent endometrial cancer cell line (OV185) were transplanted subcutaneously to test the ability of the SDR rat to accommodate human xenografts from multiple tissue types. All human cancer cell lines showed efficient tumor uptake and growth kinetics indicating that the SDR rat is a viable host for a range of xenograft studies. Mol Cancer Ther; 17(11); 2481-9. ©2018 AACR.


Subject(s)
DNA-Binding Proteins/deficiency , Spermatogonia/cytology , Stem Cells/metabolism , Xenograft Model Antitumor Assays , Animals , B-Lymphocytes/cytology , Base Sequence , Biomarkers/metabolism , Cell Line, Tumor , DNA-Binding Proteins/metabolism , Gene Knockout Techniques , Genome , Humans , Male , Rats, Sprague-Dawley , Subcutaneous Tissue/pathology , T-Lymphocytes/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...