Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38746376

ABSTRACT

Altered regulatory interactions during development likely underlie a large fraction of phenotypic diversity within and between species, yet identifying specific evolutionary changes remains challenging. Analysis of single-cell developmental transcriptomes from multiple species provides a powerful framework for unbiased identification of evolutionary changes in developmental mechanisms. Here, we leverage a "natural experiment" in developmental evolution in sea urchins, where a major life history switch recently evolved in the lineage leading to Heliocidaris erythrogramma, precipitating extensive changes in early development. Comparative analyses of scRNA-seq developmental time courses from H. erythrogramma and Lytechinus variegatus (representing the derived and ancestral states respectively) reveals numerous evolutionary changes in embryonic patterning. The earliest cell fate specification events, and the primary signaling center are co-localized in the ancestral dGRN but remarkably, in H. erythrogramma they are spatially and temporally separate. Fate specification and differentiation are delayed in most embryonic cell lineages, although in some cases, these processes are conserved or even accelerated. Comparative analysis of regulator-target gene co-expression is consistent with many specific interactions being preserved but delayed in H. erythrogramma, while some otherwise widely conserved interactions have likely been lost. Finally, specific patterning events are directly correlated with evolutionary changes in larval morphology, suggesting that they are directly tied to the life history shift. Together, these findings demonstrate that comparative scRNA-seq developmental time courses can reveal a diverse set of evolutionary changes in embryonic patterning and provide an efficient way to identify likely candidate regulatory interactions for subsequent experimental validation.

2.
Evodevo ; 14(1): 10, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37322563

ABSTRACT

The developmental gene regulatory networks (dGRNs) of two sea urchin species, Lytechinus variegatus (Lv) and Strongylocentrotus purpuratus (Sp), have remained remarkably similar despite about 50 million years since a common ancestor. Hundreds of parallel experimental perturbations of transcription factors with similar outcomes support this conclusion. A recent scRNA-seq analysis suggested that the earliest expression of several genes within the dGRNs differs between Lv and Sp. Here, we present a careful reanalysis of the dGRNs in these two species, paying close attention to timing of first expression. We find that initial expression of genes critical for cell fate specification occurs during several compressed time periods in both species. Previously unrecognized feedback circuits are inferred from the temporally corrected dGRNs. Although many of these feedbacks differ in location within the respective GRNs, the overall number is similar between species. We identify several prominent differences in timing of first expression for key developmental regulatory genes; comparison with a third species indicates that these heterochronies likely originated in an unbiased manner with respect to embryonic cell lineage and evolutionary branch. Together, these results suggest that interactions can evolve even within highly conserved dGRNs and that feedback circuits may buffer the effects of heterochronies in the expression of key regulatory genes.

3.
Dev Biol ; 491: 56-65, 2022 11.
Article in English | MEDLINE | ID: mdl-36067837

ABSTRACT

Sea urchin larvae spend weeks to months feeding on plankton prior to metamorphosis. When handled in the laboratory they are easily injured, suggesting that in the plankton they are injured with some frequency. Fortunately, larval wounds are repaired through an efficient wound response with mesenchymal pigment cells and blastocoelar cells assisting as the epithelium closes. An injury to the epithelium leads to an immediate calcium transient that rapidly spreads around the entire larva and is necessary for activating pigment cell migration toward the wound. If calcium transport is blocked, the pigment cells fail to activate and remain in place. When activated, pigment cells initiate directed migration to the wound site from distances of at least 85 â€‹µm. Upon arrival at the wound site they participate in an innate immune response. Blastocoelar cells are recruited to the injury site as well, though the calcium transient is unnecessary for activating these cells. At the wound site, blastocoelar cells participate in several functions including remodeling the skeleton if it protrudes through the epithelium.


Subject(s)
Calcium , Sea Urchins , Animals , Epithelium , Larva , Metamorphosis, Biological
4.
Curr Top Dev Biol ; 146: 25-48, 2022.
Article in English | MEDLINE | ID: mdl-35152985

ABSTRACT

This review reports recent findings on the specification and patterning of neurons that establish the larval nervous system of the sea urchin embryo. Neurons originate in three regions of the embryo. Perturbation analyses enabled construction of gene regulatory networks controlling the several neural cell types. Many of the mechanisms described reflect shared features of all metazoans and others are conserved among deuterostomes. This nervous system with a very small number of neurons supports the feeding and swimming behaviors of the larva until metamorphosis when an adult nervous system replaces that system.


Subject(s)
Gene Expression Regulation, Developmental , Sea Urchins , Animals , Gene Regulatory Networks , Larva/metabolism , Nervous System , Sea Urchins/genetics , Sea Urchins/metabolism
5.
Cells Dev ; 168: 203731, 2021 12.
Article in English | MEDLINE | ID: mdl-34610899

ABSTRACT

Early in animal development many cells are conditionally specified based on observations that those cells can be directed toward alternate fates. The endomesoderm is so named because early specification produces cells that often have been observed to simultaneously express both early endoderm and mesoderm transcription factors. Experiments with these cells demonstrate that their progeny can directed entirely toward endoderm or mesoderm, whereas normally they establish both germ layers. This review examines the mechanisms that initiate the conditional endomesoderm state, its metastability, and the mechanisms that resolve that state into definitive endoderm and mesoderm.


Subject(s)
Embryo, Nonmammalian , Sea Urchins , Animals , Endoderm , Mesoderm , Signal Transduction
6.
Development ; 148(19)2021 10 01.
Article in English | MEDLINE | ID: mdl-34463740

ABSTRACT

Using scRNA-seq coupled with computational approaches, we studied transcriptional changes in cell states of sea urchin embryos during development to the larval stage. Eighteen closely spaced time points were taken during the first 24 h of development of Lytechinus variegatus (Lv). Developmental trajectories were constructed using Waddington-OT, a computational approach to 'stitch' together developmental time points. Skeletogenic and primordial germ cell trajectories diverged early in cleavage. Ectodermal progenitors were distinct from other lineages by the 6th cleavage, although a small percentage of ectoderm cells briefly co-expressed endoderm markers that indicated an early ecto-endoderm cell state, likely in cells originating from the equatorial region of the egg. Endomesoderm cells also originated at the 6th cleavage and this state persisted for more than two cleavages, then diverged into distinct endoderm and mesoderm fates asynchronously, with some cells retaining an intermediate specification status until gastrulation. Seventy-nine out of 80 genes (99%) examined, and included in published developmental gene regulatory networks (dGRNs), are present in the Lv-scRNA-seq dataset and are expressed in the correct lineages in which the dGRN circuits operate.


Subject(s)
Genomics/methods , Lytechinus/genetics , RNA-Seq/methods , Single-Cell Analysis/methods , Transcriptome , Animals , Cell Lineage , Endoderm/cytology , Mesoderm/cytology
7.
Cells Dev ; 167: 203716, 2021 09.
Article in English | MEDLINE | ID: mdl-34245941

ABSTRACT

Early in animal development many cells are conditionally specified based on observations that those cells can be directed toward alternate fates. The endomesoderm is so named because early specification produces cells that often have been observed to simultaneously express both early endoderm and mesoderm transcription factors. Experiments with these cells demonstrate that their progeny can directed entirely toward endoderm or mesoderm, whereas normally they establish both germ layers. This review examines the mechanisms that initiate the conditional endomesoderm state, its metastability, and the mechanisms that resolve that state into definitive endoderm and mesoderm.


Subject(s)
Body Patterning , Endoderm/embryology , Mesoderm/embryology , Animals , Humans , Models, Biological , Sea Urchins/embryology , Signal Transduction
8.
Methods Mol Biol ; 2179: 7-12, 2021.
Article in English | MEDLINE | ID: mdl-32939708

ABSTRACT

The epithelial-mesenchymal transition (EMT) is a key process required for building the early body plan of metazoa. It involves coordinated and precisely timed changes in multiple cell processes such as de-adhesion, motility, invasion, and cell polarity. While much has been learned about how embryos deploy epithelial-mesenchymal transitions since Betty Hay named the process decades ago, a number of things are still not well understood. Here I will discuss some of the big questions that remain, including how is all of this controlled, how does each of the cell biological events work, and how are they so nicely coordinated with one another?


Subject(s)
Cell Adhesion/genetics , Epithelial-Mesenchymal Transition/genetics , Gastrulation/genetics , Mesoderm/growth & development , Animals , Cell Movement/genetics , Cell Polarity/genetics , Embryo, Nonmammalian , Epithelium/metabolism , Epithelium/pathology , Humans , Mesoderm/metabolism
9.
Methods Mol Biol ; 2179: 303-314, 2021.
Article in English | MEDLINE | ID: mdl-32939729

ABSTRACT

An epithelial-mesenchymal transition (EMT) occurs in almost every metazoan embryo at the time mesoderm begins to differentiate. Several embryos have a long record as models for studying an EMT given that a known population of cells enters the EMT at a known time thereby enabling a detailed study of the process. Often, however, it is difficult to learn the molecular details of these model EMT systems because the transitioning cells are a minority of the population of cells in the embryo and in most cases there is an inability to isolate that population. Here we provide a method that enables an examination of genes expressed before, during, and after the EMT with a focus on just the cells that undergo the transition. Single cell RNA-seq (scRNA-seq) has advanced as a technology making it feasible to study the trajectory of gene expression specifically in the cells of interest, in vivo, and without the background noise of other cell populations. The sea urchin skeletogenic cells constitute only 5% of the total number of cells in the embryo yet with scRNA-seq it is possible to study the genes expressed by these cells without background noise. This approach, though not perfect, adds a new tool for uncovering the mechanism of EMT in this cell type.


Subject(s)
Computational Biology/methods , Epithelial-Mesenchymal Transition , RNA-Seq/methods , Single-Cell Analysis/methods , Animals , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/metabolism , Sea Urchins
10.
Genome Biol Evol ; 12(7): 1080-1086, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32433766

ABSTRACT

Lytechinus variegatus is a camarodont sea urchin found widely throughout the western Atlantic Ocean in a variety of shallow-water marine habitats. Its distribution, abundance, and amenability to developmental perturbation make it a popular model for ecologists and developmental biologists. Here, we present a chromosomal-level genome assembly of L. variegatus generated from a combination of PacBio long reads, 10× Genomics sequencing, and HiC chromatin interaction sequencing. We show L. variegatus has 19 chromosomes with an assembly size of 870.4 Mb. The contiguity and completeness of this assembly are reflected by a scaffold length N50 of 45.5 Mb and BUSCO completeness score of 95.5%. Ab initio and transcript-informed gene modeling and annotation identified 27,232 genes with an average gene length of 12.6 kb, comprising an estimated 39.5% of the genome. Repetitive regions, on the other hand, make up 45.4% of the genome. Physical mapping of well-studied developmental genes onto each chromosome reveals nonrandom spatial distribution of distinct genes and gene families, which provides insight into how certain gene families may have evolved and are transcriptionally regulated in this species. Lastly, aligning RNA-seq and ATAC-seq data onto this assembly demonstrates the value of highly contiguous, complete genome assemblies for functional genomics analyses that is unattainable with fragmented, incomplete assemblies. This genome will be of great value to the scientific community as a resource for genome evolution, developmental, and ecological studies of this species and the Echinodermata.


Subject(s)
Genome , Genomics/methods , Lytechinus/genetics , Animals , Chromosome Mapping , Molecular Sequence Annotation
11.
Curr Top Dev Biol ; 136: 195-218, 2020.
Article in English | MEDLINE | ID: mdl-31959288

ABSTRACT

Gastrulation is arguably the most important evolutionary innovation in the animal kingdom. This process provides the basic embryonic architecture, an inner layer separated from an outer layer, from which all animal forms arise. An extraordinarily simple and elegant process of gastrulation is observed in the sea urchin embryo. The cells participating in sea urchin gastrulation are specified early during cleavage. One outcome of that specification is the expression of transcription factors that control each of the many subsequent morphogenetic changes. The first of these movements is an epithelial-mesenchymal transition (EMT) of skeletogenic mesenchyme cells, then EMT of pigment cell progenitors. Shortly thereafter, invagination of the archenteron occurs. At the end of archenteron extension, a second wave of EMT occurs to release immune cells into the blastocoel and primordial germ cells that will home to the coelomic pouches. The archenteron then remodels to establish the three parts of the gut, and at the anterior end, the gut fuses with the stomodaeum to form the through-gut. As part of the anterior remodeling, mesodermal coelomic pouches bud off the lateral sides of the archenteron tip. Multiple cell biological processes conduct each of these movements and in some cases the upstream transcription factors controlling this process have been identified. Remarkably, each event seamlessly occurs at the right time to orchestrate formation of the primitive body plan. This review covers progress toward understanding many of the molecular mechanisms underlying this sequence of morphogenetic events.


Subject(s)
Embryo, Nonmammalian/physiology , Epithelial-Mesenchymal Transition , Gastrula/physiology , Gastrulation , Morphogenesis , Sea Urchins/physiology , Transcription Factors/metabolism , Animals , Cell Movement , Embryo, Nonmammalian/cytology , Gastrula/cytology , Gene Expression Regulation, Developmental , Germ Cells , Sea Urchins/embryology , Transcription Factors/genetics
12.
Dev Biol ; 459(2): 72-78, 2020 03 15.
Article in English | MEDLINE | ID: mdl-31881199

ABSTRACT

In the sea urchin larva, most neurons lie within an ectodermal region called the ciliary band. Our understanding of the mechanisms of specification and patterning of these peripheral ciliary band neurons is incomplete. Here, we first examine the gene regulatory landscape from which this population of neural progenitors arise in the neuroectoderm. We show that ciliary band neural progenitors first appear in a bilaterally symmetric pattern on the lateral edges of chordin expression in the neuroectoderm. Later in development, these progenitors appear in a salt-and-pepper pattern in the ciliary band where they express soxC, and prox, which are markers of neural specification, and begin to express synaptotagminB, a marker of differentiated neurons. We show that the ciliary band expresses the acid sensing ion channel gene asicl, which suggests that ciliary band neurons control the larva's ability to discern touch sensitivity. Using a chemical inhibitor of MAPK signaling, we show that this signaling pathway is required for proper specification and patterning of ciliary band neurons. Using live imaging, we show that these neural progenitors undergo small distance migrations in the embryo. We then show that the normal swimming behavior of the larvae is compromised if the neurogenesis pathway is perturbed. The developmental sequence of ciliary band neurons is very similar to that of neural crest-derived sensory neurons in vertebrates and may provide insights into the evolution of sensory neurons in deuterostomes.


Subject(s)
Body Patterning/genetics , Ectoderm/growth & development , Neurogenesis/genetics , Neurons/metabolism , Sea Urchins/embryology , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Butadienes/pharmacology , Gene Expression Regulation, Developmental , Glycoproteins/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Larva/growth & development , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinases/metabolism , Nerve Tissue Proteins/metabolism , Nitriles/pharmacology , Nodal Protein/metabolism , SOXC Transcription Factors/metabolism , Signal Transduction/genetics , Synaptotagmins/metabolism
13.
Evodevo ; 10: 2, 2019.
Article in English | MEDLINE | ID: mdl-30792836

ABSTRACT

BACKGROUND: The sea urchin is a basal deuterostome that is more closely related to vertebrates than many organisms traditionally used to study neurogenesis. This phylogenetic position means that the sea urchin can provide insights into the evolution of the nervous system by helping resolve which developmental processes are deuterostome innovations, which are innovations in other clades, and which are ancestral. However, the nervous system of echinoderms is one of the least understood of all major metazoan phyla. To gain insights into echinoderm neurogenesis, spatial and temporal gene expression data are essential. Then, functional data will enable the building of a detailed gene regulatory network for neurogenesis in the sea urchin that can be compared across metazoans to resolve questions about how nervous systems evolved. RESULTS: Here, we analyze spatiotemporal gene expression during sea urchin neurogenesis for genes that have been shown to be neurogenic in one or more species. We report the expression of 21 genes expressed in areas of neurogenesis in the sea urchin embryo from blastula stage (just before neural progenitors begin their specification sequence) through pluteus larval stage (when much of the nervous system has been patterned). Among those 21 gene expression patterns, we report expression of 11 transcription factors and 2 axon guidance genes, each expressed in discrete domains in the neuroectoderm or in the endoderm. Most of these genes are expressed in and around the ciliary band. Some including the transcription factors Lv-mbx, Lv-dmrt, Lv-islet, and Lv-atbf1, the nuclear protein Lv-prohibitin, and the guidance molecule Lv-semaa are expressed in the endoderm where they are presumably involved in neurogenesis in the gut. CONCLUSIONS: This study builds a foundation to study how neurons are specified and evolved by analyzing spatial and temporal gene expression during neurogenesis in a basal deuterostome. With these expression patterns, we will be able to understand what genes are required for neural development in the sea urchin. These data can be used as a starting point to (1) build a spatial gene regulatory network for sea urchin neurogenesis, (2) identify how subtypes of neurons are specified, (3) perform comparative studies with the sea urchin, protostome, and vertebrate organisms.

14.
Methods Cell Biol ; 150: 223-233, 2019.
Article in English | MEDLINE | ID: mdl-30777177

ABSTRACT

The stereotypic cleavage pattern of sea urchin embryos provides a platform for dissection of early lineage decisions that lead to cell diversification. Cell transplantation provides a useful tool for understanding those decisions. The methods described in this paper provide a guide for how to produce embryonic mosaics in which either one cell is transplanted or an entire tier of cells are transplanted to a host embryo. Although the results of such a cut and paste experiment can be documented in many ways, one of the most useful approaches follows progeny of the transplanted cell as they go through morphogenesis using time-lapse imaging. Methods for mounting and imaging the embryos are provided.


Subject(s)
Blastomeres/cytology , Cell Transplantation/methods , Sea Urchins/cytology , Animals , Embryo, Nonmammalian/cytology , Morphogenesis/physiology
15.
Development ; 145(21)2018 11 09.
Article in English | MEDLINE | ID: mdl-30413529

ABSTRACT

Many marine larvae begin feeding within a day of fertilization, thus requiring rapid development of a nervous system to coordinate feeding activities. Here, we examine the patterning and specification of early neurogenesis in sea urchin embryos. Lineage analysis indicates that neurons arise locally in three regions of the embryo. Perturbation analyses showed that when patterning is disrupted, neurogenesis in the three regions is differentially affected, indicating distinct patterning requirements for each neural domain. Six transcription factors that function during proneural specification were identified and studied in detail. Perturbations of these proneural transcription factors showed that specification occurs differently in each neural domain prior to the Delta-Notch restriction signal. Though gene regulatory network state changes beyond the proneural restriction are largely unresolved, the data here show that the three neural regions already differ from each other significantly early in specification. Future studies that define the larval nervous system in the sea urchin must therefore separately characterize the three populations of neurons that enable the larva to feed, to navigate, and to move food particles through the gut.


Subject(s)
Embryo, Nonmammalian/metabolism , Lytechinus/embryology , Lytechinus/metabolism , Neurogenesis , Animals , Body Patterning/genetics , Bone Morphogenetic Proteins/metabolism , Cell Lineage/genetics , Fibroblast Growth Factors/metabolism , Gene Expression Regulation, Developmental , Gene Regulatory Networks , Lytechinus/genetics , Models, Biological , Neurogenesis/genetics , Nodal Protein/metabolism , Signal Transduction , Transcription Factors/metabolism
16.
Dev Biol ; 435(2): 138-149, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29331498

ABSTRACT

Correct patterning of the nervous system is essential for an organism's survival and complex behavior. Embryologists have used the sea urchin as a model for decades, but our understanding of sea urchin nervous system patterning is incomplete. Previous histochemical studies identified multiple neurotransmitters in the pluteus larvae of several sea urchin species. However, little is known about how, where and when neural subtypes are differentially specified during development. Here, we examine the molecular mechanisms of neuronal subtype specification in 3 distinct neural subtypes in the Lytechinus variegatus larva. We show that these subtypes are specified through Delta/Notch signaling and identify a different transcription factor required for the development of each neural subtype. Our results show achaete-scute and neurogenin are proneural for the serotonergic neurons of the apical organ and cholinergic neurons of the ciliary band, respectively. We also show that orthopedia is not proneural but is necessary for the differentiation of the cholinergic/catecholaminergic postoral neurons. Interestingly, these transcription factors are used similarly during vertebrate neurogenesis. We believe this study is a starting point for building a neural gene regulatory network in the sea urchin and for finding conserved deuterostome neurogenic mechanisms.


Subject(s)
Ectoderm/cytology , Gene Expression Regulation, Developmental , Gene Regulatory Networks/genetics , Lytechinus/embryology , Nerve Tissue Proteins/physiology , Neurogenesis/physiology , Neurons/cytology , Transcription Factors/physiology , Achaete-Scute Complex Genome Region/physiology , Animals , Intracellular Signaling Peptides and Proteins/physiology , Lytechinus/cytology , Membrane Proteins/physiology , Morpholinos/pharmacology , Neurons/classification , RNA, Antisense/pharmacology , Receptors, Notch/physiology
17.
Mech Dev ; 148: 3-10, 2017 12.
Article in English | MEDLINE | ID: mdl-28684256

ABSTRACT

BACKGROUND: Gastrulation is a complex orchestration of movements by cells that are specified early in development. Until now, classical convergent extension was considered to be the main contributor to sea urchin archenteron extension, and the relative contributions of cell divisions were unknown. Active migration of cells along the axis of extension was also not considered as a major factor in invagination. RESULTS: Cell transplantations plus live imaging were used to examine endoderm cell morphogenesis during gastrulation at high-resolution in the optically clear sea urchin embryo. The invagination sequence was imaged throughout gastrulation. One of the eight macromeres was replaced by a fluorescently labeled macromere at the 32 cell stage. At gastrulation those patches of fluorescent endoderm cell progeny initially about 4 cells wide, released a column of cells about 2 cells wide early in gastrulation and then often this column narrowed to one cell wide by the end of archenteron lengthening. The primary movement of the column of cells was in the direction of elongation of the archenteron with the narrowing (convergence) occurring as one of the two cells moved ahead of its neighbor. As the column narrowed, the labeled endoderm cells generally remained as a contiguous population of cells, rarely separated by intrusion of a lateral unlabeled cell. This longitudinal cell migration mechanism was assessed quantitatively and accounted for almost 90% of the elongation process. Much of the extension was the contribution of Veg2 endoderm with a minor contribution late in gastrulation by Veg1 endoderm cells. We also analyzed the contribution of cell divisions to elongation. Endoderm cells in Lytechinus variagatus were determined to go through approximately one cell doubling during gastrulation. That doubling occurs without a net increase in cell mass, but the question remained as to whether oriented divisions might contribute to archenteron elongation. We learned that indeed there was a biased orientation of cell divisions along the plane of archenteron elongation, but when the impact of that bias was analyzed quantitatively, it contributed a maximum 15% to the total elongation of the gut. CONCLUSIONS: The major driver of archenteron elongation in the sea urchin, Lytechinus variagatus, is directed movement of Veg2 endoderm cells as a narrowing column along the plane of elongation. The narrowing occurs as cells in the column converge as they migrate, so that the combination of migration and the angular convergence provide the major component of the lengthening. A minor contributor to elongation is oriented cell divisions that contribute to the lengthening but no more than about 15%.


Subject(s)
Gastrula/growth & development , Gastrulation/physiology , Morphogenesis/physiology , Sea Urchins/embryology , Animals , Cell Movement/genetics , Endoderm/growth & development , Endoderm/ultrastructure , Gastrula/ultrastructure , Sea Urchins/genetics , Sea Urchins/ultrastructure
18.
F1000Res ; 52016.
Article in English | MEDLINE | ID: mdl-26962438

ABSTRACT

Sea urchin embryos begin zygotic transcription shortly after the egg is fertilized.  Throughout the cleavage stages a series of transcription factors are activated and, along with signaling through a number of pathways, at least 15 different cell types are specified by the beginning of gastrulation.  Experimentally, perturbation of contributing transcription factors, signals and receptors and their molecular consequences enabled the assembly of an extensive gene regulatory network model.  That effort, pioneered and led by Eric Davidson and his laboratory, with many additional insights provided by other laboratories, provided the sea urchin community with a valuable resource.  Here we describe the approaches used to enable the assembly of an advanced gene regulatory network model describing molecular diversification during early development.  We then provide examples to show how a relatively advanced authenticated network can be used as a tool for discovery of how diverse developmental mechanisms are controlled and work.

19.
Curr Top Dev Biol ; 117: 15-29, 2016.
Article in English | MEDLINE | ID: mdl-26969970

ABSTRACT

In the sea urchin morphogenesis follows extensive molecular specification. The specification controls the many morphogenetic events and these, in turn, precede patterning steps that establish the larval body plan. To understand how the embryo is built it was necessary to understand those series of molecular steps. Here an example of the historical sequence of those discoveries is presented as it unfolded over the last 50 years, the years during which major progress in understanding development of many animals and plants was documented by CTDB. In sea urchin development a rich series of experimental studies first established many of the phenomenological components of skeletal morphogenesis and patterning without knowledge of the molecular components. The many discoveries of transcription factors, signals, and structural proteins that contribute to the shape of the endoskeleton of the sea urchin larva then followed as molecular tools became available. A number of transcription factors and signals were discovered that were necessary for specification, morphogenesis, and patterning. Perturbation of the transcription factors and signals provided the means for assembling models of the gene regulatory networks used for specification and controlled the subsequent morphogenetic events. The earlier experimental information informed perturbation experiments that asked how patterning worked. As a consequence it was learned that ectoderm provides a series of patterning signals to the skeletogenic cells and as a consequence the skeletogenic cells secrete a highly patterned skeleton based on their ability to genotypically decode the localized reception of several signals. We still do not understand the complexity of the signals received by the skeletogenic cells, nor do we understand in detail how the genotypic information shapes the secreted skeletal biomineral, but the current knowledge at least outlines the sequence of events and provides a useful template for future discoveries.


Subject(s)
Gene Expression Regulation, Developmental , Gene Regulatory Networks , Morphogenesis/physiology , Sea Urchins/growth & development , Sea Urchins/genetics , Animals
20.
PLoS Biol ; 14(3): e1002391, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26943850

ABSTRACT

The ecologically significant shift in developmental strategy from planktotrophic (feeding) to lecithotrophic (nonfeeding) development in the sea urchin genus Heliocidaris is one of the most comprehensively studied life history transitions in any animal. Although the evolution of lecithotrophy involved substantial changes to larval development and morphology, it is not known to what extent changes in gene expression underlie the developmental differences between species, nor do we understand how these changes evolved within the context of the well-defined gene regulatory network (GRN) underlying sea urchin development. To address these questions, we used RNA-seq to measure expression dynamics across development in three species: the lecithotroph Heliocidaris erythrogramma, the closely related planktotroph H. tuberculata, and an outgroup planktotroph Lytechinus variegatus. Using well-established statistical methods, we developed a novel framework for identifying, quantifying, and polarizing evolutionary changes in gene expression profiles across the transcriptome and within the GRN. We found that major changes in gene expression profiles were more numerous during the evolution of lecithotrophy than during the persistence of planktotrophy, and that genes with derived expression profiles in the lecithotroph displayed specific characteristics as a group that are consistent with the dramatically altered developmental program in this species. Compared to the transcriptome, changes in gene expression profiles within the GRN were even more pronounced in the lecithotroph. We found evidence for conservation and likely divergence of particular GRN regulatory interactions in the lecithotroph, as well as significant changes in the expression of genes with known roles in larval skeletogenesis. We further use coexpression analysis to identify genes of unknown function that may contribute to both conserved and derived developmental traits between species. Collectively, our results indicate that distinct evolutionary processes operate on gene expression during periods of life history conservation and periods of life history divergence, and that this contrast is even more pronounced within the GRN than across the transcriptome as a whole.


Subject(s)
Gene Regulatory Networks , Sea Urchins/growth & development , Animals , Cell Lineage , Evolution, Molecular , Feeding Behavior , Gastrointestinal Tract/growth & development , Gene Expression Profiling , Larva/growth & development , Nervous System/growth & development , Phylogeny , Sea Urchins/genetics , Sea Urchins/metabolism , Selection, Genetic , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...