Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 13: 1125003, 2022.
Article in English | MEDLINE | ID: mdl-36726680

ABSTRACT

Barley is a major cereal crop for temperate climates, and a diploid genetic model for polyploid wheat. Cereal straw biomass is an attractive source of feedstock for green technologies but lignin, a key determinant of feedstock recalcitrance, complicates bio-conversion processes. However, manipulating lignin content to improve the conversion process could negatively affect agronomic traits. An alternative approach is to manipulate lignin composition which influences the physical and chemical properties of straw. This study validates the function of a barley ferulate 5-hydroxylase gene and demonstrates that its downregulation using the RNA-interference approach substantially impacts lignin composition. We identified five barley genes having putative ferulate 5-hydroxylase activity. Downregulation of HvF5H1 substantially reduced the lignin syringyl/guaiacyl (S/G) ratio in straw while the lignin content, straw mechanical properties, plant growth habit, and grain characteristics all remained unaffected. Metabolic profiling revealed significant changes in the abundance of 173 features in the HvF5H1-RNAi lines. The drastic changes in the lignin polymer of transgenic lines highlight the plasticity of barley lignification processes and the associated potential for manipulating and improving lignocellulosic biomass as a feedstock for green technologies. On the other hand, our results highlight some differences between the lignin biosynthetic pathway in barley, a temperate climate grass, and the warm climate grass, rice, and underscore potential diversity in the lignin biosynthetic pathways in grasses.

2.
Plant Biotechnol J ; 17(3): 594-607, 2019 03.
Article in English | MEDLINE | ID: mdl-30133138

ABSTRACT

Caffeic acid O-methyltransferase (COMT), the lignin biosynthesis gene modified in many brown-midrib high-digestibility mutants of maize and sorghum, was targeted for downregulation in the small grain temperate cereal, barley (Hordeum vulgare), to improve straw properties. Phylogenetic and expression analyses identified the barley COMT orthologue(s) expressed in stems, defining a larger gene family than in brachypodium or rice with three COMT genes expressed in lignifying tissues. RNAi significantly reduced stem COMT protein and enzyme activity, and modestly reduced stem lignin content while dramatically changing lignin structure. Lignin syringyl-to-guaiacyl ratio was reduced by ~50%, the 5-hydroxyguaiacyl (5-OH-G) unit incorporated into lignin at 10--15-fold higher levels than normal, and the amount of p-coumaric acid ester-linked to cell walls was reduced by ~50%. No brown-midrib phenotype was observed in any RNAi line despite significant COMT suppression and altered lignin. The novel COMT gene family structure in barley highlights the dynamic nature of grass genomes. Redundancy in barley COMTs may explain the absence of brown-midrib mutants in barley and wheat. The barley COMT RNAi lines nevertheless have the potential to be exploited for bioenergy applications and as animal feed.


Subject(s)
Hordeum/metabolism , Lignin/metabolism , Methyltransferases/metabolism , RNA Interference , Gene Expression Regulation, Plant/genetics , Genes, Plant/genetics , Hordeum/enzymology , Hordeum/genetics , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism
3.
Science ; 341(6150): 1103-6, 2013 Sep 06.
Article in English | MEDLINE | ID: mdl-23950498

ABSTRACT

Lignin is a major component of plant secondary cell walls. Here we describe caffeoyl shikimate esterase (CSE) as an enzyme central to the lignin biosynthetic pathway. Arabidopsis thaliana cse mutants deposit less lignin than do wild-type plants, and the remaining lignin is enriched in p-hydroxyphenyl units. Phenolic metabolite profiling identified accumulation of the lignin pathway intermediate caffeoyl shikimate in cse mutants as compared to caffeoyl shikimate levels in the wild type, suggesting caffeoyl shikimate as a substrate for CSE. Accordingly, recombinant CSE hydrolyzed caffeoyl shikimate into caffeate. Associated with the changes in lignin, the conversion of cellulose to glucose in cse mutants increased up to fourfold as compared to that in the wild type upon saccharification without pretreatment. Collectively, these data necessitate the revision of currently accepted models of the lignin biosynthetic pathway.


Subject(s)
Arabidopsis Proteins/chemistry , Arabidopsis/enzymology , Carboxylic Ester Hydrolases/chemistry , Lignin/biosynthesis , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Carboxylic Ester Hydrolases/genetics , Glucose/chemistry , Metabolic Networks and Pathways , Mutation , Shikimic Acid/chemistry , Substrate Specificity
5.
Plant Sci ; 175(1-2): 24-31, 2008.
Article in English | MEDLINE | ID: mdl-18650958

ABSTRACT

Plant growth and development is controlled by a set of hormones whose responses are tightly regulated in order to direct appropriate responses. In several hormone signaling pathways, protein turnover has emerged as a common regulatory element. Ethylene is a phytohormone that controls a variety of processes, including fruit ripening, senescence, and stress response. This review focuses on the regulation of the ethylene response pathway through protein degradation. Protein turnover has been found to regulate both ethylene biosynthesis and ethylene response. Ethylene production is regulated through the turnover of the biosynthetic enzyme ACS. Recently it was found that ethylene receptors are controlled by protein turnover as well. A third process in the control of ethylene signaling is the targeting of the ethylene response transcription factor ETHYLENE INSENSITIVE3 (EIN3) for degradation by the proteins EIN3-BINDING F-BOX 1 and 2 (EBF1 and EBF2).

SELECTION OF CITATIONS
SEARCH DETAIL
...