Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
2.
Annu Rev Entomol ; 68: 129-149, 2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36270273

ABSTRACT

Since the transition from water to land, maintaining water balance has been a key challenge for terrestrial arthropods. We explore factors that allow terrestrial arthropods to survive within a variably dry world and how they shape ecological interactions. Detection of water and hydration is critical for maintaining water content. Efficient regulation of internal water content is accomplished by excretory and osmoregulatory systems that balance water intake and loss. Biochemical and physiological responses are necessary as water content declines to prevent and repair the damage that occurs during dehydration. Desiccation avoidance can occur seasonally or daily via a move to more favorable areas. Dehydration and its avoidance have ecological impacts that extend beyond a single species to alter trophic interactions. As climate changes, evolutionary and ecological processes will be critical to species survival during drought.


Subject(s)
Arthropods , Animals , Water , Dehydration , Environment , Droughts
3.
PLoS One ; 16(11): e0260070, 2021.
Article in English | MEDLINE | ID: mdl-34807930

ABSTRACT

Dehydration can have negative effects on animal physiological performance, growth, reproduction, and survival, and most animals seek to minimize these effects by reducing water losses or seeking water sources. Much-but not all-of the research on animal water balance comes from dryland ecosystems. However, animals inhabiting mesic regions may also experience desiccating conditions, for example within urban heat islands or during heatwaves and droughts. Here we examined how spatial variation in impervious surface and spatial and temporal variation in microclimate impact water demand behavior of terrestrial arthropods and mollusks in three areas of mesic Northwest Ohio, with analysis of taxa that exhibited the greatest water demand behavior. Water demand behavior was measured as the frequency that individuals were observed at an artificial water source (a moistened pouch), relative to the frequency at a control (a dry pouch). Overall, terrestrial arthropods and mollusks were found about twice as often at the water source than at the control (equivalent to 86 more observations on the wet pouch than on dry at each site, on average), with ants accounting for over 50% of the overall response in urban areas. Daily fluctuations in vapor pressure deficit (VPD) best predicted daily variation in water demand behavior, with increased demand at higher VPD. Mean VPD was generally highest near urbanized areas, but effects of VPD on water demand behavior were generally lower in urbanized areas (possibly related to reductions in overall abundance reducing the potential response). On certain days, VPD was high in natural areas and greenspaces, and this coincided with the highest arthropod water demand behavior observed. Our results suggest that terrestrial arthropod communities do experience periods of water demand within mesic regions, including in greenspaces outside cities, where they appear to respond strongly to short periods of dry conditions-an observation with potential relevance for understanding the effects of climate change.


Subject(s)
Appetitive Behavior/physiology , Arthropods/metabolism , Mollusca/metabolism , Animals , Ants , Climate Change , Droughts , Ecosystem , Microclimate , Ohio , Vapor Pressure , Water , Water Resources , Water-Electrolyte Balance
4.
Environ Pollut ; 268(Pt B): 115793, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33069045

ABSTRACT

Trace chemicals are common in marine and freshwater ecosystems globally. It is recognized that in the environment, individual chemicals are rarely found in isolation. Insufficient work has examined which chemicals co-occur and which methods best identify these mixtures. Using an existing data set, we found evidence that simple correlation analysis is better at identifying mixtures of commonly co-occurring trace chemicals than more commonly used PCA methods. Moreover, simple correlation analysis, unlike PCA, can be used in cases with unbalanced designs and with data points below reportable limits. Application of this approach allowed identification of 10 groups of chemicals commonly found together in freshwaters of the continental US, representing common "chemical syndromes." Better identification of co-occurring chemical combinations could aid in our understanding of biological and ecological effects of aquatic contaminants. This research provides evidence of correlation analyses as a more effective method for identifying commonly co-occurring aquatic contaminants. We also examined the patterns of these mixtures with a dataset consisting of concentrations of 406 trace chemicals from 38 sample locations across the continental US.


Subject(s)
Ecosystem , Water Pollutants, Chemical , Fresh Water , Water Pollutants, Chemical/analysis
5.
Oecologia ; 190(4): 715-723, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31119446

ABSTRACT

Current declines in the abundance and diversity of bees and other pollinators has created uncertainty in their ability to reliably deliver pollination services. Recent studies examining urban bee diversity have provided conflicting results, with some studies identifying parts of cities with high bee diversity and others documenting reduced diversity with high levels of urbanization, with potential effects on surrounding agricultural areas. However, these studies have not specifically investigated pollination services, or examined the influence of local habitat conditions on these services. We surveyed urban gardens and city parks across the metropolitan region of Toledo, Ohio (USA) to understand how urbanization (impervious surface) and local habitat characteristics (herbaceous cover, floral abundance and color, tree abundance, canopy cover, soil moisture, garden size) impact bee communities (abundance, diversity, composition) and pollination services (visitation frequency). We collected 729 bees representing 19 genera and 57 species. We found that bee community composition was strongly associated with percent impervious surface. Bee abundance declined with increased canopy cover and impervious surface, while declines in bee diversity with increasing impervious surface were greatly reduced by increases in floral resources. Visitation rates were positively correlated with bee abundance and diversity, declining with increased impervious surface, but increasing with floral resource availability. These results suggest that increasing floral resources at high impervious sites may counteract the negative effects of impervious surface on bee diversity and pollination services in cities similar to Toledo, OH.


Subject(s)
Pollination , Urbanization , Animals , Bees , Cities , Ecosystem , Flowers , Ohio
6.
Sci Rep ; 9(1): 1643, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30733542

ABSTRACT

Predicting how species will respond to climate change and land use modification is essential for conserving organisms and maintaining ecosystem services. Thermal tolerances have been shown to have strong predictive power, but the potential importance of desiccation tolerances have been less explored in some species. Here, we report measurements of thermal and desiccation tolerances and safety margins across a gradient of urbanization, for three bee species: silky striped sweat bees (Agapostemon sericeus), western honeybees (Apis mellifera), and common eastern bumblebees (Bombus impatiens). We found significant differences in thermal tolerances, measured as critical thermal maximum (CTmax), amongst species. Bumblebees were the least sensitive to warming, with a higher CTmax (53.1 °C) than sweat bees (50.3 °C) and honeybees (49.1 °C). We also found significant differences in desiccation tolerances, measured as critical water content (CWC), between all species. Sweat bees were the least sensitive to desiccation, with the lowest CWC (51.7%), followed by bumblebees (63.7%) and honeybees (74.2%). Moreover, bumblebees and sweat bees were closer to their CTmax in more urbanized locations, while honeybees were closer to their CWC. These results suggest that bees have differential sensitivities to environmental change and managing for diverse bee communities in the face of global change may require mitigating both changes in temperature and water.


Subject(s)
Acclimatization , Bees/physiology , Body Temperature , Climate Change , Ecosystem , Urbanization , Water/chemistry , Animals
7.
Ecology ; 100(4): e02635, 2019 04.
Article in English | MEDLINE | ID: mdl-30693470

ABSTRACT

Previous work suggests that animal water balance can influence trophic interactions, with predators increasing their consumption of water-laden prey to meet water demands. But it is unclear how the need for water interacts with the need for energy to drive trophic interactions under shifting conditions. Using manipulative field experiments, we show that water balance influences the effects of top predators on prey with contrasting ratios of water and energy, altering the frequency of intraguild predation. Water-stressed top predators (large spiders) negatively affect water-laden basal prey (crickets), especially male prey with higher water content, whereas alleviation of water limitation causes top predators to switch to negatively affecting energy-rich midlevel predators (small spiders). Thus, the relative water and energy content of multiple prey, combined with the water demand of the top predator, influences trophic interactions in ways that can alter the strength of intraguild predation. These findings underscore the need for integration of multiresource approaches for understanding implications of global change for food webs.


Subject(s)
Food Chain , Spiders , Animals , Predatory Behavior
8.
Curr Opin Insect Sci ; 23: 13-21, 2017 10.
Article in English | MEDLINE | ID: mdl-29129277

ABSTRACT

Recent research has documented shifts in per capita trophic interactions and food webs in response to changes in environmental moisture, from the top-down (consumers to plants), rather than solely bottom-up (plants to consumers). These responses may be predictable from effects of physiological, behavioral, and ecological traits on animal water balance, although predictions could be modified by energy or nutrient requirements, the risk of predation, population-level responses, and bottom-up effects. Relatively little work has explicitly explored food web effects of changes in animal water balance, despite the likelihood of widespread relevance, including during periodic droughts in mesic locations, where taxa may lack adaptations for water conservation. More research is needed, particularly in light of climate change and hydrological alteration.


Subject(s)
Food Chain , Water , Animals , Body Size , Ecosystem , Feeding Behavior/physiology
9.
PeerJ ; 5: e3620, 2017.
Article in English | MEDLINE | ID: mdl-28890848

ABSTRACT

Urbanization transforms undeveloped landscapes into built environments, causing changes in communities and ecological processes. Flying arthropods play important roles in these processes as pollinators, decomposers, and predators, and can be important in structuring food webs. The goal of this study was to identify associations between urbanization and the composition of communities of flying (and floating) arthropods within gardens and parks in a medium-sized mesic city. We predicted that flying arthropod abundance and diversity would respond strongly to percent impervious surface and distance to city center, measurements of urbanization. Flying arthropods were sampled from 30 gardens and parks along an urbanization gradient in Toledo, Ohio, during July and August 2016, using elevated pan traps. A variety of potential predictor variables were also recorded at each site. We collected a total of 2,369 individuals representing nine orders. We found that flying arthropod community composition was associated with percent impervious surface and canopy cover. Overall flying arthropod abundance was negatively associated with percent impervious surface and positively associated with distance to city center. Hymenoptera (bees, wasps, ants), Lepidoptera (moths, butterflies), and Araneae (spiders) were positively associated with distance to city center. Hemiptera (true bugs), Diptera (flies), and Araneae were negatively associated with percent impervious surface. Both distance to city center and percent impervious surface are metrics of urbanization, and this study shows how these factors influence flying arthropod communities in urban gardens and city parks, including significant reductions in taxa that contain pollinators and predators important to urban agriculture and forestry. A variety of environmental factors also showed significant associations with responses (e.g. canopy cover and soil moisture), suggesting these factors may underlie or modulate the urbanization effects. More research is needed to determine mechanisms of change.

10.
Proc Biol Sci ; 283(1836)2016 08 17.
Article in English | MEDLINE | ID: mdl-27534953

ABSTRACT

Despite the clear importance of water balance to the evolution of terrestrial life, much remains unknown about the effects of animal water balance on food webs. Based on recent research suggesting animal water imbalance can increase trophic interaction strengths in cages, we hypothesized that water availability could drive top-down effects in open environments, influencing the occurrence of trophic cascades. We manipulated large spider abundance and water availability in 20 × 20 m open-air plots in a streamside forest in Arizona, USA, and measured changes in cricket and small spider abundance and leaf damage. As expected, large spiders reduced both cricket abundance and herbivory under ambient, dry conditions, but not where free water was added. When water was added (free or within moist leaves), cricket abundance was unaffected by large spiders, but spiders still altered herbivory, suggesting behavioural effects. Moreover, we found threshold-type increases in herbivory at moderately low soil moisture (between 5.5% and 7% by volume), suggesting the possibility that water balance may commonly influence top-down effects. Overall, our results point towards animal water balance as an important driver of direct and indirect species interactions and food web dynamics in terrestrial ecosystems.


Subject(s)
Food Chain , Forests , Spiders/physiology , Water , Animals , Arizona , Gryllidae , Herbivory , Predatory Behavior
11.
PLoS One ; 9(10): e109276, 2014.
Article in English | MEDLINE | ID: mdl-25295874

ABSTRACT

BACKGROUND: Rivers around the world are drying with increasing frequency, but little is known about effects on terrestrial animal communities. Previous research along the San Pedro River in southeastern AZ, USA, suggests that changes in the availability of water resources associated with river drying lead to changes in predator abundance, community composition, diversity, and abundance of particular taxa of arthropods, but these observations have not yet been tested manipulatively. METHODS AND RESULTS: In this study, we constructed artificial pools in the stream bed adjacent to a drying section of the San Pedro River and maintained them as the river dried. We compared pitfall trapped arthropods near artificial pools to adjacent control sites where surface waters temporarily dried. Assemblage composition changed differentially at multiple taxonomic levels, resulting in different assemblages at pools than at control sites, with multiple taxa and richness of carabid beetle genera increasing at pools but not at controls that dried. On the other hand, predator biomass, particularly wolf spiders, and diversity of orders and families were consistently higher at control sites that dried. These results suggest an important role for colonization dynamics of pools, as well as the ability of certain taxa, particularly burrowing wolf spiders, to withstand periods of temporary drying. CONCLUSIONS: Overall, we found some agreement between this manipulative study of water resources and a previous analysis of river drying that showed shifts in composition, changes in diversity, and declines in abundance of certain taxa (e.g. carabid beetles). However, colonization dynamics of pools, as well as compensatory strategies of predatory wolf spiders seem to have led to patterns that do not match previous research, with control sites maintaining high diversity, despite drying. Tolerance of river drying by some species may allow persistence of substantial diversity in the face of short-term drying. The long-term effects of drying remain to be investigated.


Subject(s)
Arthropods/physiology , Animals , Biodiversity , Rivers , Spiders/physiology , Water Resources
12.
Biol Rev Camb Philos Soc ; 87(3): 563-82, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22098619

ABSTRACT

Species interactions play key roles in linking the responses of populations, communities, and ecosystems to environmental change. For instance, species interactions are an important determinant of the complexity of changes in trophic biomass with variation in resources. Water resources are a major driver of terrestrial ecology and climate change is expected to greatly alter the distribution of this critical resource. While previous studies have documented strong effects of global environmental change on species interactions in general, responses can vary from region to region. Dryland ecosystems occupy more than one-third of the Earth's land mass, are greatly affected by changes in water availability, and are predicted to be hotspots of climate change. Thus, it is imperative to understand the effects of environmental change on these globally significant ecosystems. Here, we review studies of the responses of population-level plant-plant, plant-herbivore, and predator-prey interactions to changes in water availability in dryland environments in order to develop new hypotheses and predictions to guide future research. To help explain patterns of interaction outcomes, we developed a conceptual model that views interaction outcomes as shifting between (1) competition and facilitation (plant-plant), (2) herbivory, neutralism, or mutualism (plant-herbivore), or (3) neutralism and predation (predator-prey), as water availability crosses physiological, behavioural, or population-density thresholds. We link our conceptual model to hypothetical scenarios of current and future water availability to make testable predictions about the influence of changes in water availability on species interactions. We also examine potential implications of our conceptual model for the relative importance of top-down effects and the linearity of patterns of change in trophic biomass with changes in water availability. Finally, we highlight key research needs and some possible broader impacts of our findings. Overall, we hope to stimulate and guide future research that links changes in water availability to patterns of species interactions and the dynamics of populations and communities in dryland ecosystems.


Subject(s)
Climate Change , Ecosystem , Plants/metabolism , Water , Animals , Species Specificity
13.
PLoS One ; 5(12): e15696, 2010 Dec 31.
Article in English | MEDLINE | ID: mdl-21209877

ABSTRACT

Fluxes of carbon, nitrogen, and water between ecosystem components and organisms have great impacts across levels of biological organization. Although much progress has been made in tracing carbon and nitrogen, difficulty remains in tracing water sources from the ecosystem to animals and among animals (the "water web"). Naturally occurring, non-radioactive isotopes of hydrogen and oxygen in water provide a potential method for tracing water sources. However, using this approach for terrestrial animals is complicated by a change in water isotopes within the body due to differences in activity of heavy and light isotopes during cuticular and transpiratory water losses. Here we present a technique to use stable water isotopes to estimate the mean mix of water sources in a population by sampling a group of sympatric animals over time. Strong correlations between H and O isotopes in the body water of animals collected over time provide linear patterns of enrichment that can be used to predict a mean mix of water sources useful in standard mixing models to determine relative source contribution. Multiple temperature and humidity treatment levels do not greatly alter these relationships, thus having little effect on our ability to estimate this population-level mix of water sources. We show evidence for the validity of using multiple samples of animal body water, collected across time, to estimate the isotopic mix of water sources in a population and more accurately trace water sources. The ability to use isotopes to document patterns of animal water use should be a great asset to biologists globally, especially those studying drylands, droughts, streamside areas, irrigated landscapes, and the effects of climate change.


Subject(s)
Ecosystem , Animals , Body Water/chemistry , Carbon Isotopes/chemistry , Ecology , Gryllidae , Humidity , Isotopes/chemistry , Nitrogen Isotopes/chemistry , Population Dynamics , Regression Analysis , Rivers , Spiders , Temperature
14.
Ecology ; 90(6): 1463-9, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19569360

ABSTRACT

Community ecology has long focused on energy and nutrients as currencies of species interactions. Evidence from physiological ecology and recent studies suggest that in terrestrial systems, water may influence animal behavior and global patterns of species richness. Despite these observations, water has received little attention as a currency directly influencing animal species interactions. Here, we show that the per capita interaction strength between predatory wolf spiders and their primary prey, field crickets, is strong (-0.266) when predators and prey are maintained in ambient dry conditions, but is near zero (0.001) when water is provided ad libitum. Moreover, crickets consume 31-fold more moist leaf material in ambient dry conditions, switching from old litter to moist green leaves when free water is scarce. Under dry conditions, animals may make foraging decisions based first on water needs, not energy or nutrients, suggesting strong and predictable effects of alterations in aridity on species interactions.


Subject(s)
Food Chain , Gryllidae/physiology , Predatory Behavior/physiology , Spiders/physiology , Water , Animals , Population Dynamics
15.
J Insect Sci ; 8: 1-9, 2008.
Article in English | MEDLINE | ID: mdl-20302456

ABSTRACT

Maintenance of biochemical gradients, membrane fluidity, and sustained periods of activity are key physiological and behavioral functions of water for animals living in desiccating environments. Water stress may reduce the organism's ability to maintain these functions and as such, may reduce an organism's growth. However, few studies have examined this potential effect. The effects of altered hydration state of the house cricket, Acheta domesticus L. (Orthoptera: Gryllidae) on individual growth were studied under laboratory conditions. Crickets were permitted access to water for three different durations each day, resulting in significant differences in hydration state (32% greater hydration for maximum than minimum duration of water availability). Growth was 59% and 72% greater in dry mass and length, respectively, between the lowest and highest hydration state treatments. These findings may be representative for a variety of animal species and environments and could have important ecological implications.


Subject(s)
Gryllidae/physiology , Water/physiology , Analysis of Variance , Animals , Body Weight/physiology , Dehydration/physiopathology , Gryllidae/growth & development , Random Allocation , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...