Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Med Genet ; 55(6): 384-394, 2018 06.
Article in English | MEDLINE | ID: mdl-29386252

ABSTRACT

BACKGROUND: Germline pathogenic variants in SDHB/SDHC/SDHD are the most frequent causes of inherited phaeochromocytomas/paragangliomas. Insufficient information regarding penetrance and phenotypic variability hinders optimum management of mutation carriers. We estimate penetrance for symptomatic tumours and elucidate genotype-phenotype correlations in a large cohort of SDHB/SDHC/SDHD mutation carriers. METHODS: A retrospective survey of 1832 individuals referred for genetic testing due to a personal or family history of phaeochromocytoma/paraganglioma. 876 patients (401 previously reported) had a germline mutation in SDHB/SDHC/SDHD (n=673/43/160). Tumour risks were correlated with in silico structural prediction analyses. RESULTS: Tumour risks analysis provided novel penetrance estimates and genotype-phenotype correlations. In addition to tumour type susceptibility differences for individual genes, we confirmed that the SDHD:p.Pro81Leu mutation has a distinct phenotype and identified increased age-related tumour risks with highly destabilising SDHB missense mutations. By Kaplan-Meier analysis, the penetrance (cumulative risk of clinically apparent tumours) in SDHB and (paternally inherited) SDHD mutation-positive non-probands (n=371/67 with detailed clinical information) by age 60 years was 21.8% (95% CI 15.2% to 27.9%) and 43.2% (95% CI 25.4% to 56.7%), respectively. Risk of malignant disease at age 60 years in non-proband SDHB mutation carriers was 4.2%(95% CI 1.1% to 7.2%). With retrospective cohort analysis to adjust for ascertainment, cumulative tumour risks for SDHB mutation carriers at ages 60 years and 80 years were 23.9% (95% CI 20.9% to 27.4%) and 30.6% (95% CI 26.8% to 34.7%). CONCLUSIONS: Overall risks of clinically apparent tumours for SDHB mutation carriers are substantially lower than initially estimated and will improve counselling of affected families. Specific genotype-tumour risk associations provides a basis for novel investigative strategies into succinate dehydrogenase-related mechanisms of tumourigenesis and the development of personalised management for SDHB/SDHC/SDHD mutation carriers.


Subject(s)
Adrenal Gland Neoplasms/genetics , Membrane Proteins/genetics , Paraganglioma/genetics , Pheochromocytoma/genetics , Succinate Dehydrogenase/genetics , Adrenal Gland Neoplasms/pathology , Age Factors , Aged , Aged, 80 and over , Female , Genetic Association Studies , Genotype , Germ-Line Mutation/genetics , Heterozygote , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Mutation, Missense/genetics , Paraganglioma/pathology , Pheochromocytoma/pathology , Risk Factors , Sex Characteristics
2.
Histopathology ; 64(4): 477-83, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24236567

ABSTRACT

AIMS: Renal tumours have recently been described in association with mutations in the gene encoding the B subunit of succinate dehydrogenase, a mitochondrial Krebs cycle and electron transport chain enzyme (SDHB-associated renal cell carcinomas). The aim of this study was to investigate the roles of different signalling pathways in the pathogenesis of these tumours. METHODS AND RESULTS: We used immunohistochemistry and antibodies against phospho-specific epitopes to examine the activity of three potential signalling pathways in tumour cells of three genetically confirmed cases of SDHB-associated renal cell carcinomas. We found no evidence supporting a role for either the mTOR [p-mTOR (Ser2448), p-S6 riboprotein (Ser235/236)] or hypoxia-inducible (carbonic anhydrase 9 and EGFR) pathways. However, there was immunohistochemical reactivity for phosphorylated AMP-dependent kinase (p-AMPK Thr172) and glycogen synthase kinase 3 (GSK3) phosphorylation (p-GSK3 Ser12), and nuclear expression of cyclin D1. CONCLUSIONS: We suggest that these tumours may arise through a mechanism involving ATP depletion, activation of AMPK, and induction of cyclin D1, and that this may be a unique pathway of tumour development that has the potential for therapeutic intervention in these rare tumours.


Subject(s)
Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/metabolism , Germ-Line Mutation , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Succinate Dehydrogenase/genetics , AMP-Activated Protein Kinases/metabolism , Adult , Aged , Carcinoma, Renal Cell/pathology , Cyclin D1/metabolism , Female , Glycogen Synthase Kinase 3/metabolism , Humans , Immunohistochemistry , Kidney Neoplasms/pathology , Middle Aged , Phosphorylation , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL