Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Immunity ; 57(3): 446-461.e7, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38423012

ABSTRACT

In response to viral infection, how cells balance translational shutdown to limit viral replication and the induction of antiviral components like interferons (IFNs) is not well understood. Moreover, how distinct isoforms of IFN-induced oligoadenylate synthetase 1 (OAS1) contribute to this antiviral response also requires further elucidation. Here, we show that human, but not mouse, OAS1 inhibits SARS-CoV-2 replication through its canonical enzyme activity via RNase L. In contrast, both mouse and human OAS1 protect against West Nile virus infection by a mechanism distinct from canonical RNase L activation. OAS1 binds AU-rich elements (AREs) of specific mRNAs, including IFNß. This binding leads to the sequestration of IFNß mRNA to the endomembrane regions, resulting in prolonged half-life and continued translation. Thus, OAS1 is an ARE-binding protein with two mechanisms of antiviral activity: driving inhibition of translation but also a broader, non-canonical function of protecting IFN expression from translational shutdown.


Subject(s)
Interferons , Oligoribonucleotides , Virus Diseases , Animals , Humans , Mice , Adenine Nucleotides , Antiviral Agents/pharmacology , 2',5'-Oligoadenylate Synthetase/genetics , 2',5'-Oligoadenylate Synthetase/metabolism
2.
PLoS Pathog ; 19(11): e1011755, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38032851

ABSTRACT

HIV rapidly rebounds after interruption of antiretroviral therapy (ART). HIV-specific CD8+ T cells may act to prevent early events in viral reactivation. However, the presence of viral immune escape mutations may limit the effect of CD8+ T cells on viral rebound. Here, we studied the impact of CD8 immune pressure on post-treatment rebound of barcoded SIVmac293M in 14 Mamu-A*01 positive rhesus macaques that initiated ART on day 14, and subsequently underwent two analytic treatment interruptions (ATIs). Rebound following the first ATI (seven months after ART initiation) was dominated by virus that retained the wild-type sequence at the Mamu-A*01 restricted Tat-SL8 epitope. By the end of the two-month treatment interruption, the replicating virus was predominantly escaped at the Tat-SL8 epitope. Animals reinitiated ART for 3 months prior to a second treatment interruption. Time-to-rebound and viral reactivation rate were significantly slower during the second treatment interruption compared to the first. Tat-SL8 escape mutants dominated early rebound during the second treatment interruption, despite the dominance of wild-type virus in the proviral reservoir. Furthermore, the escape mutations detected early in the second treatment interruption were well predicted by those replicating at the end of the first, indicating that escape mutant virus in the second interruption originated from the latent reservoir as opposed to evolving de novo post rebound. SL8-specific CD8+ T cell levels in blood prior to the second interruption were marginally, but significantly, higher (median 0.73% vs 0.60%, p = 0.016). CD8+ T cell depletion approximately 95 days after the second treatment interruption led to the reappearance of wild-type virus. This work suggests that CD8+ T cells can actively suppress the rebound of wild-type virus, leading to the dominance of escape mutant virus after treatment interruption.


Subject(s)
HIV Infections , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Macaca mulatta , Virus Replication/physiology , CD8-Positive T-Lymphocytes , Epitopes , Viral Load , Anti-Retroviral Agents/therapeutic use , Anti-Retroviral Agents/pharmacology
3.
PLoS Pathog ; 19(7): e1011059, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37399208

ABSTRACT

Transmitted/founder (TF) simian-human immunodeficiency viruses (SHIVs) express HIV-1 envelopes modified at position 375 to efficiently infect rhesus macaques while preserving authentic HIV-1 Env biology. SHIV.C.CH505 is an extensively characterized virus encoding the TF HIV-1 Env CH505 mutated at position 375 shown to recapitulate key features of HIV-1 immunobiology, including CCR5-tropism, a tier 2 neutralization profile, reproducible early viral kinetics, and authentic immune responses. SHIV.C.CH505 is used frequently in nonhuman primate studies of HIV, but viral loads after months of infection are variable and typically lower than those in people living with HIV. We hypothesized that additional mutations besides Δ375 might further enhance virus fitness without compromising essential components of CH505 Env biology. From sequence analysis of SHIV.C.CH505-infected macaques across multiple experiments, we identified a signature of envelope mutations associated with higher viremia. We then used short-term in vivo mutational selection and competition to identify a minimally adapted SHIV.C.CH505 with just five amino acid changes that substantially improve virus replication fitness in macaques. Next, we validated the performance of the adapted SHIV in vitro and in vivo and identified the mechanistic contributions of selected mutations. In vitro, the adapted SHIV shows improved virus entry, enhanced replication on primary rhesus cells, and preserved neutralization profiles. In vivo, the minimally adapted virus rapidly outcompetes the parental SHIV with an estimated growth advantage of 0.14 days-1 and persists through suppressive antiretroviral therapy to rebound at treatment interruption. Here, we report the successful generation of a well-characterized, minimally adapted virus, termed SHIV.C.CH505.v2, with enhanced replication fitness and preserved native Env properties that can serve as a new reagent for NHP studies of HIV-1 transmission, pathogenesis, and cure.


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Humans , Macaca mulatta/metabolism , env Gene Products, Human Immunodeficiency Virus , Virus Replication/physiology
4.
Open Forum Infect Dis ; 10(5): ofad278, 2023 May.
Article in English | MEDLINE | ID: mdl-37265667

ABSTRACT

Prolonged coronavirus disease 2019 may generate new viral variants. We report an immunocompromised patient treated with monoclonal antibodies who experienced rebound of viral RNA and emergence of an antibody-resistant (>1000-fold) variant containing 5 mutations in the spike gene. The mutant virus was isolated from respiratory secretions, suggesting the potential for secondary transmission.

5.
Clin Infect Dis ; 77(5): 696-702, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37078720

ABSTRACT

We administered severe acute respiratory syndrome coronavirus-2 viral-specific T cells (VSTs) under emergency investigational new drug applications to 6 immunocompromised patients with persistent coronavirus disease 2019 (COVID-19) and characterized clinical and virologic responses. Three patients had partial responses after failing other therapies but then died. Two patients completely recovered, but the role of VSTs in recovery was unclear due to concomitant use of other antivirals. One patient had not responded to 2 courses of remdesivir and experienced sustained recovery after VST administration. The use of VSTs in immunocompromised patients with persistent COVID-19 requires further study.


Subject(s)
COVID-19 , Hematopoietic Stem Cell Transplantation , Humans , SARS-CoV-2 , T-Lymphocytes , Immunocompromised Host
6.
iScience ; 25(8): 104798, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35875685

ABSTRACT

The emergence of SARS-CoV-2 variants of concern (VOCs) requires the development of next-generation biologics with high neutralization breadth. Here, we characterized a human VH domain, F6, which we generated by sequentially panning large phage-displayed VH libraries against receptor binding domains (RBDs) containing VOC mutations. Cryo-EM analyses reveal that F6 has a unique binding mode that spans a broad surface of the RBD and involves the antibody framework region. Attachment of an Fc region to a fusion of F6 and ab8, a previously characterized VH domain, resulted in a construct (F6-ab8-Fc) that broadly and potently neutralized VOCs including Omicron. Additionally, prophylactic treatment using F6-ab8-Fc reduced live Beta (B.1.351) variant viral titers in the lungs of a mouse model. Our results provide a new potential therapeutic against SARS-CoV-2 variants including Omicron and highlight a vulnerable epitope within the spike that may be exploited to achieve broad protection against circulating variants.

7.
bioRxiv ; 2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35194603

ABSTRACT

The emergence of SARS-CoV-2 variants of concern (VOCs) requires the development of next-generation biologics that are effective against a variety of strains of the virus. Herein, we characterize a human V H domain, F6, which we generated by sequentially panning large phage displayed V H libraries against receptor binding domains (RBDs) containing VOC mutations. Cryo-EM analyses reveal that F6 has a unique binding mode that spans a broad surface of the RBD and involves the antibody framework region. Attachment of an Fc region to a fusion of F6 and ab8, a previously characterized V H domain, resulted in a construct (F6-ab8-Fc) that neutralized Omicron pseudoviruses with a half-maximal neutralizing concentration (IC 50 ) of 4.8 nM in vitro . Additionally, prophylactic treatment using F6-ab8-Fc reduced live Beta (B.1.351) variant viral titers in the lungs of a mouse model. Our results provide a new potential therapeutic against SARS-CoV-2 VOCs - including the recently emerged Omicron variant - and highlight a vulnerable epitope within the spike protein RBD that may be exploited to achieve broad protection against circulating variants.

8.
J Am Med Dir Assoc ; 22(8): 1593-1598, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34129831

ABSTRACT

OBJECTIVE: COVID-19 disproportionately impacts residents in long-term care facilities. Our objective was to quantify the presence and magnitude of antibody response in vaccinated, older adult residents at assisted living, personal care, and independent living communities. DESIGN: A cross-sectional quality improvement study was conducted March 15 - April 1, 2021 in the greater Pittsburgh region. SETTING AND POPULATION: Participants were older adult residents at assisted living, personal care, and independent living communities, who received mRNA-based COVID-19 vaccine. Conditions that impair immune responses were exclusionary criteria. METHODS: Sera were collected to measure IgG anti-SARS-CoV-2 antibody level with reflex to total anti-SARS-CoV-2 immunoglobulin levels, and blinded evaluation of SARS-CoV-2 pseudovirus neutralization titers. Descriptive statistics, Pearson correlation coefficients, and multiple linear regression analysis evaluated relationships between factors potentially associated with antibody levels. Spearman correlations were calculated between antibody levels and neutralization titers. RESULTS: All participants (N = 70) had received two rounds of vaccination and were found to have antibodies with wide variation in relative levels. Antibody levels trended lower in males, advanced age, current use of steroids, and longer length of time from vaccination. Pseudovirus neutralization titer levels were strongly correlated (P < .001) with Beckman Coulter antibody levels [D614 G NT50, rs = 0.91; B.1.1.7 (UK) NT50, rs = 0.91]. CONCLUSIONS AND IMPLICATIONS: Higher functioning, healthier, residential older adults mounted detectable antibody responses when vaccinated with mRNA-based COVID-19 vaccines. Data suggests some degree of immunity is present during the immediate period following vaccination. However, protective effects remain to be determined in larger studies as clinical protection is afforded by ongoing adaptive immunity, which is known to be decreased in older adults. This study provides important preliminary results on level of population risk in older adult residents at assisted living, personal care, and independent living communities to inform reopening strategies, but are not likely to be translatable for residents in nursing homes.


Subject(s)
COVID-19 Vaccines , COVID-19 , Aged , Antibody Formation , Cross-Sectional Studies , Humans , Male , RNA, Messenger , SARS-CoV-2 , Vaccination
10.
Clin Infect Dis ; 73(3): e815-e821, 2021 08 02.
Article in English | MEDLINE | ID: mdl-33507235

ABSTRACT

A chimeric antigen receptor-modified T-cell therapy recipient developed severe coronavirus disease 2019, intractable RNAemia, and viral replication lasting >2 months. Premortem endotracheal aspirate contained >2 × 1010 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA copies/mL and infectious virus. Deep sequencing revealed multiple sequence variants consistent with intrahost virus evolution. SARS-CoV-2 humoral and cell-mediated immunity were minimal. Prolonged transmission from immunosuppressed patients is possible.


Subject(s)
COVID-19 , Receptors, Chimeric Antigen , Cell- and Tissue-Based Therapy , Humans , SARS-CoV-2 , Virus Replication
11.
mBio ; 12(1)2021 01 19.
Article in English | MEDLINE | ID: mdl-33468702

ABSTRACT

The severe acute respiratory coronavirus 2 (SARS-CoV-2) is the cause of the global outbreak of COVID-19. The epidemic accelerated in Philadelphia, PA, in the spring of 2020, with the city experiencing a first peak of infections on 15 April, followed by a decline through midsummer. Here, we investigate spread of the epidemic in the first wave in Philadelphia using full-genome sequencing of 52 SARS-CoV-2 samples obtained from 27 hospitalized patients collected between 30 March and 17 July 2020. Sequences most commonly resembled lineages circulating at earlier times in New York, suggesting transmission primarily from this location, though a minority of Philadelphia genomes matched sequences from other sites, suggesting additional introductions. Multiple genomes showed even closer matches to other Philadelphia isolates, suggestive of ongoing transmission within Philadelphia. We found that all of our isolates contained the D614G substitution in the viral spike and belong to lineages variously designated B.1, Nextstrain clade 20A or 20C, and GISAID clade G or GH. There were no viral sequence polymorphisms detectably associated with disease outcome. For some patients, genome sequences were determined longitudinally or concurrently from multiple body sites. In both cases, some comparisons showed reproducible polymorphisms, suggesting initial seeding with multiple variants and/or accumulation of polymorphisms after infection. These results thus provide data on the sources of SARS-CoV-2 infection in Philadelphia and begin to explore the dynamics within hospitalized patients.IMPORTANCE Understanding how SARS-CoV-2 spreads globally and within infected individuals is critical to the development of mitigation strategies. We found that most lineages in Philadelphia had resembled sequences from New York, suggesting infection primarily but not exclusively from this location. Many genomes had even nearer neighbors within Philadelphia, indicating local spread. Multiple genome sequences were available for some subjects and in a subset of cases could be shown to differ between time points and body sites within an individual, indicating heterogeneous viral populations within individuals and raising questions on the mechanisms responsible. There was no evidence that different lineages were associated with different outcomes in patients, emphasizing the importance of individual-specific vulnerability.


Subject(s)
COVID-19/virology , SARS-CoV-2/genetics , A549 Cells , Adult , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2/genetics , COVID-19/epidemiology , Female , Genome, Viral , Humans , Male , Middle Aged , New York/epidemiology , Philadelphia/epidemiology , Phylogeny , Polymorphism, Genetic , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/genetics
12.
J Clin Invest ; 131(3)2021 02 01.
Article in English | MEDLINE | ID: mdl-33301425

ABSTRACT

Clonal expansion of infected CD4+ T cells is a major mechanism of HIV-1 persistence and a barrier to achieving a cure. Potential causes are homeostatic proliferation, effects of HIV-1 integration, and interaction with antigens. Here, we show that it is possible to link antigen responsiveness, the full proviral sequence, the integration site, and the T cell receptor ß-chain (TCRß) sequence to examine the role of recurrent antigenic exposure in maintaining the HIV-1 reservoir. We isolated CMV- and Gag-responding CD4+ T cells from 10 treated individuals. Proviral populations in CMV-responding cells were dominated by large clones, including clones harboring replication-competent proviruses. TCRß repertoires showed high clonality driven by converging adaptive responses. Although some proviruses were in genes linked to HIV-1 persistence (BACH2, STAT5B, MKL1), the proliferation of infected cells under antigenic stimulation occurred regardless of the site of integration. Paired TCRß and integration site analysis showed that infection could occur early or late in the course of a clone's response to antigen and could generate infected cell populations too large to be explained solely by homeostatic proliferation. Together, these findings implicate antigen-driven clonal selection as a major factor in HIV-1 persistence, a finding that will be a difficult challenge to eradication efforts.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Clonal Selection, Antigen-Mediated , HIV Infections/immunology , HIV-1/physiology , Virus Integration/immunology , Virus Latency/immunology , Adult , CD4-Positive T-Lymphocytes/pathology , Female , HIV Infections/therapy , Humans , Male , gag Gene Products, Human Immunodeficiency Virus/immunology
13.
Curr Opin HIV AIDS ; 16(1): 3-10, 2021 01.
Article in English | MEDLINE | ID: mdl-33186228

ABSTRACT

PURPOSE OF REVIEW: In response to the HIV-AIDS pandemic, great strides have been made in developing molecular methods that accurately quantify nucleic acid products of HIV-1 at different stages of viral replication and to assess HIV-1 sequence diversity and its effect on susceptibility to small molecule inhibitors and neutralizing antibodies. Here, we review how knowledge gained from these approaches, including viral RNA quantification and sequence analyses, have been rapidly applied to study SARS-CoV-2 and the COVID-19 pandemic. RECENT FINDINGS: Recent studies have shown detection of SARS-CoV-2 RNA in blood of infected individuals by reverse transcriptase PCR (RT-PCR); and, as in HIV-1 infection, there is growing evidence that the level of viral RNA in plasma may be related to COVID disease severity. Unlike HIV-1, SARS-CoV-2 sequences are highly conserved limiting SARS-CoV-2 sequencing applications to investigating interpatient genetic diversity for phylogenetic analysis. Sensitive sequencing technologies, originally developed for HIV-1, will be needed to investigate intrapatient SARS-CoV-2 genetic variation in response to antiviral therapeutics and vaccines. SUMMARY: Methods used for HIV-1 have been rapidly applied to SARS-CoV-2/COVID-19 to understand pathogenesis and prognosis. Further application of such methods should improve precision of therapy and outcome.


Subject(s)
COVID-19/virology , HIV Infections/virology , HIV-1/isolation & purification , RNA, Viral/genetics , SARS-CoV-2/isolation & purification , COVID-19/blood , COVID-19/diagnosis , HIV Infections/blood , HIV Infections/diagnosis , HIV-1/genetics , Humans , RNA, Viral/blood , SARS-CoV-2/genetics
14.
JCI Insight ; 5(20)2020 10 15.
Article in English | MEDLINE | ID: mdl-32970634

ABSTRACT

The integration of HIV DNA into the host genome contributes to lifelong infection in most individuals. Few studies have examined integration in lymphoid tissue, where HIV predominantly persists before and after antiretroviral treatment (ART). Of particular interest is whether integration site distributions differ between infection stages with paired blood and tissue comparisons. Here, we profiled HIV integration site distributions in sorted memory, tissue-resident, and/or follicular helper CD4+ T cell subsets from paired blood and lymphoid tissue samples from acute, chronic, and ART-treated individuals. We observed minor differences in the frequency of nonintronic and nondistal intergenic sites, varying with tissue and residency phenotypes during ART. Genomic and epigenetic annotations were generally similar. Clonal expansion of cells marked by identical integration sites was detected, with increased detection in chronic and ART-treated individuals. However, overlap between or within CD4+ T cell subsets or tissue compartments was only observed in 8 unique sites of the 3540 sites studied. Together, these findings suggest that shared integration sites between blood and tissue may, depending on the tissue site, be the exception rather than the rule and indicate that additional studies are necessary to fully understand the heterogeneity of tissue-sequestered HIV reservoirs.


Subject(s)
DNA, Viral/genetics , HIV Infections/genetics , Host-Pathogen Interactions/genetics , Virus Integration/genetics , Adult , Anti-Retroviral Agents/administration & dosage , CD4-Positive T-Lymphocytes/virology , Genome, Human/drug effects , HIV Infections/drug therapy , HIV Infections/pathology , HIV Infections/virology , HIV-1/genetics , HIV-1/pathogenicity , Humans , Lymphoid Tissue/virology , Male , T-Lymphocyte Subsets/virology , Viral Load/genetics , Young Adult
15.
Article in English | MEDLINE | ID: mdl-32071061

ABSTRACT

Etravirine (ETR) is a nonnucleoside reverse transcriptase inhibitor (NNRTI) used in treatment-experienced individuals. Genotypic resistance test-interpretation systems can predict ETR resistance; however, genotype-based algorithms are derived primarily from HIV-1 subtype B and may not accurately predict resistance in non-B subtypes. The frequency of ETR resistance among recombinant subtype C HIV-1 and the accuracy of genotypic interpretation systems were investigated. HIV-1LAI containing full-length RT from HIV-1 subtype C-positive individuals experiencing virologic failure (>10,000 copies/ml and >1 NNRTI resistance-associated mutation) were phenotyped for ETR susceptibility. Fold change (FC) was calculated against a composite 50% effective concentration (EC50) from treatment-naive individuals and three classifications were assigned: (i) <2.9-FC, susceptible; (ii) ≥2.9- to 10-FC, partially resistant; and (iii) >10-FC, fully resistant. The Stanford HIVdb-v8.4 was used for genotype predictions merging the susceptible/potential low-level and low-level/intermediate groups for 3 × 3 comparison. Fifty-four of a hundred samples had reduced ETR susceptibility (≥2.9-FC). The FC correlated with HIVdb-v8.4 (Spearman's rho = 0.62; P < 0.0001); however, 44% of samples were partially (1 resistance classification difference) and 4% completely discordant (2 resistance classification differences). Of the 34 samples with an FC of >10, 26 were HIVdb-v8.4 classified as low-intermediate resistant. Mutations L100I, Y181C, or M230L were present in 27/34 (79%) of samples with an FC of >10 but only in 2/46 (4%) of samples with an FC of <2.9. No other mutations were associated with ETR resistance. Viruses containing the mutation K65R were associated with reduced ETR susceptibility, but 65R reversions did not increase ETR susceptibility. Therefore, genotypic interpretation systems were found to misclassify ETR susceptibility in HIV-1 subtype C samples. Modifications to genotypic algorithms are needed to improve the prediction of ETR resistance for the HIV-1 subtype C.


Subject(s)
Anti-Retroviral Agents/therapeutic use , Drug Resistance, Viral/genetics , HIV Infections/drug therapy , HIV-1/drug effects , HIV-1/genetics , Nitriles/therapeutic use , Pyrimidines/therapeutic use , Reverse Transcriptase Inhibitors/therapeutic use , Algorithms , Genotype , HIV-1/classification , Humans , Microbial Sensitivity Tests , South Africa , Treatment Failure
16.
Plant Physiol ; 182(1): 136-146, 2020 01.
Article in English | MEDLINE | ID: mdl-31690707

ABSTRACT

We developed public web sites and resources for data access, display, and analysis of plant small RNAs. These web sites are interconnected with related data types. The current generation of these informatics tools was developed for Illumina data, evolving over more than 15 years of improvements. Our online databases have customized web interfaces to uniquely handle and display RNA-derived data from diverse plant species, ranging from Arabidopsis (Arabidopsis thaliana) to wheat (Triticum spp.), including many crop and model species. The web interface displays the abundance and genomic context of data for small RNAs, parallel analysis of RNA ends/degradome reads, RNA sequencing, and even chromatin immunoprecipitation sequencing data; it also provides information about potentially novel transcripts (antisense transcripts, alternative splice isoforms, and regulatory intergenic transcripts). Numerous options are included for downloading data as tables or via web services. Interpretation of these data is facilitated by the inclusion of extensive repeat or transposon data in our genome viewer. We have developed graphical and analytical tools, including a new viewer and a query page for the analysis of phased small RNAs; these are particularly useful for understanding the complex small RNA pathways of plants. These public databases are accessible at https://mpss.danforthcenter.org.


Subject(s)
Arabidopsis/metabolism , Gene Expression Regulation, Plant/physiology , Genome, Plant/genetics , High-Throughput Nucleotide Sequencing/methods , RNA, Plant/genetics , Triticum/genetics , Arabidopsis/genetics , Databases, Genetic , Gene Expression Regulation, Plant/genetics , Genomics , Sequence Analysis, RNA/methods
17.
Nat Microbiol ; 4(11): 1778-1780, 2019 11.
Article in English | MEDLINE | ID: mdl-31358983

ABSTRACT

Here we investigate links between the structures of viruses and routes of transmission. Viruses show a wide range of different structures, and the transmission of viruses between vertebrate hosts can take place through many different routes. We compiled a database of 243 virus-host combinations and report a statistical analysis that documents the associations between structures and routes of transmission-for example, viruses that are transmitted by the faecal-oral mode of infection are rarely enclosed in a lipid envelope.


Subject(s)
Genome, Viral , Vertebrates/virology , Virus Diseases/transmission , Viruses/chemistry , Animals , Cats , Cattle , Chickens , Dogs , Feces/virology , Horses , Humans , Mouth/virology , Swine , Viral Structures , Virus Diseases/veterinary , Viruses/genetics
18.
Microbiome ; 6(1): 196, 2018 10 30.
Article in English | MEDLINE | ID: mdl-30376898

ABSTRACT

BACKGROUND: Historically, the human womb has been thought to be sterile in healthy pregnancies, but this idea has been challenged by recent studies using DNA sequence-based methods, which have suggested that the womb is colonized with bacteria. For example, analysis of DNA from placenta samples yielded small proportions of microbial sequences which were proposed to represent normal bacterial colonization. However, an analysis by our group showed no distinction between background negative controls and placenta samples. Also supporting the idea that the womb is sterile is the observation that germ-free mammals can be generated by sterile delivery of neonates into a sterile isolator, after which neonates remain germ-free, which would seem to provide strong data in support of sterility of the womb. RESULTS: To probe this further and to investigate possible placental colonization associated with spontaneous preterm birth, we carried out another study comparing microbiota in placenta samples from 20 term and 20 spontaneous preterm deliveries. Both 16S rRNA marker gene sequencing and shotgun metagenomic sequencing were used to characterize placenta and control samples. We first quantified absolute amounts of bacterial 16S rRNA gene sequences using 16S rRNA gene quantitative PCR (qPCR). As in our previous study, levels were found to be low in the placenta samples and indistinguishable from negative controls. Analysis by DNA sequencing did not yield a placenta microbiome distinct from negative controls, either using marker gene sequencing as in our previous work, or with shotgun metagenomic sequencing. Several types of artifacts, including erroneous read classifications and barcode misattribution, needed to be identified and removed from the data to clarify this point. CONCLUSIONS: Our findings do not support the existence of a consistent placental microbiome, in either placenta from term deliveries or spontaneous preterm births.


Subject(s)
Bacteria/isolation & purification , Microbiota/genetics , Placenta/microbiology , Uterus/microbiology , Adult , Bacteria/genetics , DNA, Bacterial/genetics , Female , Humans , Pregnancy , Premature Birth , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Term Birth
19.
J Virol ; 92(19)2018 10 01.
Article in English | MEDLINE | ID: mdl-30045982

ABSTRACT

Influenza viruses use distinct antibody escape mechanisms depending on the overall complexity of the antibody response that is encountered. When grown in the presence of a hemagglutinin (HA) monoclonal antibody, influenza viruses typically acquire a single HA mutation that reduces the binding of that specific monoclonal antibody. In contrast, when confronted with mixtures of HA monoclonal antibodies or polyclonal sera that have antibodies that bind several HA epitopes, influenza viruses acquire mutations that increase HA binding to host cells. Recent data from our laboratory and others suggest that some humans possess antibodies that are narrowly focused on HA epitopes that were present in influenza virus strains that they were likely exposed to in childhood. Here, we completed a series of experiments to determine if humans with narrowly focused HA antibody responses are able to select for influenza virus antigenic escape variants in ovo We identified three human donors that possessed HA antibody responses that were heavily focused on a single HA antigenic site. Sera from all three of these donors selected single HA escape mutations during in ovo passage experiments, similar to what has been previously reported for single monoclonal antibodies. These single HA mutations directly reduced binding of serum antibodies used for selection. We propose that new antigenic variants of influenza viruses might originate in individuals who produce antibodies that are narrowly focused on HA epitopes that were present in viral strains that they encountered in childhood.IMPORTANCE Influenza vaccine strains must be updated frequently since circulating viral strains continuously change in antigenically important epitopes. Our previous studies have demonstrated that some individuals possess antibody responses that are narrowly focused on epitopes that were present in viral strains that they encountered during childhood. Here, we show that influenza viruses rapidly escape this type of polyclonal antibody response when grown in ovo by acquiring single mutations that directly prevent antibody binding. These studies improve our understanding of how influenza viruses evolve when confronted with narrowly focused polyclonal human antibodies.


Subject(s)
Antigens, Viral/immunology , Epitopes/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Immune Evasion/genetics , Influenza A Virus, H1N1 Subtype/immunology , Influenza, Human/immunology , Mutation , Animals , Antibodies, Neutralizing/biosynthesis , Antibodies, Neutralizing/chemistry , Antibodies, Viral/biosynthesis , Antibodies, Viral/chemistry , Antigenic Variation , Antigens, Viral/genetics , Chick Embryo , Epitopes/chemistry , Epitopes/genetics , Gene Expression , Hemagglutination Inhibition Tests , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , Immune Sera/chemistry , Influenza A Virus, H1N1 Subtype/genetics , Influenza, Human/genetics , Influenza, Human/virology , Models, Molecular , Neutralization Tests , Zygote/immunology , Zygote/virology
20.
ACS Med Chem Lett ; 9(7): 679-684, 2018 Jul 12.
Article in English | MEDLINE | ID: mdl-30034600

ABSTRACT

A novel series of tricyclic tetrahydroquinolines were identified as potent and selective CRTh2 receptor antagonists. The agonism and antagonism switch was achieved through structure-based drug design (SBDD) using a CRTh2 receptor homologue model. The challenge of very low exposures in pharmacokinetic studies was overcome by exhaustive medicinal chemistry lead optimization through focused SAR studies on the tricyclic core. Further optimization resulted in the identification of the preclinical candidate 4-(cyclopropyl((3aS,9R,9aR)-7-fluoro-4-(4-(trifluoromethoxy)benzoyl)-2,3,3a,4,9,9a-hexahydro-1H-cyclopenta[b]quinolin-9-yl)amino)-4-oxobutanoic acid (15c, MK-8318) with potent and selective CRTh2 antagonist activity and a favorable PK profile suitable for once daily oral dosing for potential treatment of asthma.

SELECTION OF CITATIONS
SEARCH DETAIL
...