Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Infect Genet Evol ; 115: 105502, 2023 11.
Article in English | MEDLINE | ID: mdl-37716446

ABSTRACT

Borrelia burgdorferi sensu lato is a species complex of spirochetal bacteria that occupy different ecological niches which is reflected in their reservoir host- and vector-associations. Borrelia genomes possess numerous linear and circular plasmids. Proteins encoded by plasmid genes play a major role in host- and vector-interaction and are important for Borrelia niche adaptation. However, the plasmid composition and therewith the gene repertoire may vary even in strains of a single species. Borrelia garinii, one of the six human pathogenic species, is common in Europe (vector Ixodes ricinus), Asia (vector Ixodes persulcatus) and in marine birds (vector Ixodes uriae). For the latter, only a single culture isolate (Far04) and its genome were previously available. The genome was rather small containing only one circular and six linear plasmids with a notable absence of cp32 plasmids. To further investigate B. garinii from marine transmission cycles and to explore i) whether the small number of plasmids found in isolate Far04 is a common feature in B. garinii from marine birds and presents an adaptation to this particular niche and ii) whether there may be a correlation between genome type and host species, we initiated in vitro cultures from live I. uriae collected in 2017 and 2018 from marine avian hosts and their nests. Hosts included common guillemots, Atlantic Puffin, razorbill, and kittiwake. We obtained 17 novel isolates of which 10 were sequenced using Illumina technology, one also with Pacific Bioscience technology. The 10 genomes segregated into five different genome types defined by plasmid types (based on PFam32 loci). We show that the genomes of seabird associated B. garinii contain fewer plasmids (6-9) than B. garinii from terrestrial avian species (generally ≥10), potentially suggesting niche adaptation. However, genome type did not match an association with the diverse avian seabird hosts investigated but matched the clonal complex they originated from, perhaps reflecting the isolates evolutionary history. Questions that should be addressed in future studies are (i) how is plasmid diversity related to host- and/or vector adaptation; (ii) do the different seabird species differ in reservoir host competence, and (iii) can the genome types found in seabirds use terrestrial birds as reservoir hosts.


Subject(s)
Borrelia burgdorferi Group , Borrelia , Charadriiformes , Ixodes , Lyme Disease , Animals , Humans , Borrelia burgdorferi Group/genetics , Lyme Disease/veterinary , Lyme Disease/microbiology , Ixodes/microbiology , Biological Evolution , Birds/microbiology
2.
Sci Rep ; 13(1): 4793, 2023 03 23.
Article in English | MEDLINE | ID: mdl-36959235

ABSTRACT

The richness and structure of symbiont assemblages are shaped by many factors acting at different spatial and temporal scales. Among them, host phylogeny and geographic distance play essential roles. To explore drivers of richness and structure of symbiont assemblages, feather mites and seabirds are an attractive model due to their peculiar traits. Feather mites are permanent ectosymbionts and considered highly host-specific with limited dispersal abilities. Seabirds harbour species-rich feather mite communities and their colonial breeding provides opportunities for symbionts to exploit several host species. To unravel the richness and test the influence of host phylogeny and geographic distance on mite communities, we collected feather mites from 11 seabird species breeding across the Atlantic Ocean and Mediterranean Sea. Using morphological criteria, we identified 33 mite species, of which 17 were new or recently described species. Based on community similarity analyses, mite communities were clearly structured by host genera, while the effect of geography within host genera or species was weak and sometimes negligible. We found a weak but significant effect of geographic distance on similarity patterns in mite communities for Cory's shearwaters Calonectris borealis. Feather mite specificity mainly occurred at the host-genus rather than at host-species level, suggesting that previously inferred host species-specificity may have resulted from poorly sampling closely related host species. Overall, our results show that host phylogeny plays a greater role than geography in determining the composition and structure of mite assemblages and pinpoints the importance of sampling mites from closely-related host species before describing mite specificity patterns.


Subject(s)
Mites , Animals , Mediterranean Sea , Birds , Host Specificity , Atlantic Ocean
3.
Mov Ecol ; 11(1): 11, 2023 Feb 11.
Article in English | MEDLINE | ID: mdl-36774513

ABSTRACT

BACKGROUND: As for other life history traits, variation occurs in movement patterns with important impacts on population demography and community interactions. Individuals can show variation in the extent of seasonal movement (or migration) or can change migratory routes among years. Internal factors, such as age or body condition, may strongly influence changes in movement patterns. Indeed, young individuals often tend to move across larger spatial scales compared to adults, but relatively few studies have investigated the proximate and ultimate factors driving such variation. This is particularly the case for seabirds in which the sub-adult period is long and difficult to follow. Here, we examine migration variation and the factors that affect it in a common Mediterranean seabird, the Yellow-legged gull (Larus michahellis). METHODS: The data include the encounter histories of 5158 birds marked as fledglings between 1999 and 2004 at 14 different colonies in southern France and resighted over 10 years. Using a multi-event mark-recapture modeling framework, we use these data to estimate the probability of movement and survival, taking into account recapture heterogeneity and age. RESULTS: In accordance with previous studies, we find that young individuals have greater mobility than older individuals. However, the spatial extent of juvenile movements depends on natal colony location, with a strong difference in the proportion of sedentary individuals among colonies less than 50 km apart. Colony quality or local population dynamics may explain these differences. Indeed, young birds from colonies with strong juvenile survival probabilities (~ 0.75) appear to be more sedentary than those from colonies with low survival probabilities (~ 0.36). CONCLUSIONS: This study shows the importance of studying individuals of different ages and from different colonies when trying to understand seabird movement strategies. Local breeding success and the availability of food resources may explain part of the among colony differences we observe and require explicit testing. We discuss our results with respect to the feedback loop that may occur between breeding success and mobility, and its potential implications for population demography and the dissemination of avian disease at different spatial scales.

4.
Mar Pollut Bull ; 187: 114483, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36608475

ABSTRACT

Gulls can be particularly vulnerable to ingesting plastics when using anthropogenic food sources, with potential consequences for survival and reproductive success. Although birds are known to switch foraging habitats over the breeding season to provide higher quality food for chick provisioning, it is unclear what this means regarding the ingestion of plastics. Here, we tested whether breeding gulls decrease the amount of plastic ingested during reproduction by collecting pellets from a series of monitored nests at a large yellow-legged gull (Larus michahellis) colony in southern France. We found at least one plastic item in 83.9 % of the analyzed pellets, with the most abundant plastic type being polyethylene-based sheet plastic. As predicted, we found a slight decrease in the number of plastic items in pellets at chick hatching. These results suggest that gulls, like other birds, may adjust foraging habits to provide more digestible, less risky, food to chicks.


Subject(s)
Charadriiformes , Animals , Plastics , Seasons , Birds , Eating
5.
Glob Chang Biol ; 29(7): 1729-1740, 2023 04.
Article in English | MEDLINE | ID: mdl-36700347

ABSTRACT

Climate change is most strongly felt in the polar regions of the world, with significant impacts on the species that live there. The arrival of parasites and pathogens from more temperate areas may become a significant problem for these populations, but current observations of parasite presence often lack a historical reference of prior absence. Observations in the high Arctic of the seabird tick Ixodes uriae suggested that this species expanded poleward in the last two decades in relation to climate change. As this tick can have a direct impact on the breeding success of its seabird hosts and vectors several pathogens, including Lyme disease spirochaetes, understanding its invasion dynamics is essential for predicting its impact on polar seabird populations. Here, we use population genetic data and host serology to test the hypothesis that I. uriae recently expanded into Svalbard. Both black-legged kittiwakes (Rissa tridactyla) and thick-billed murres (Uria lomvia) were sampled for ticks and blood in Kongsfjorden, Spitsbergen. Ticks were genotyped using microsatellite markers and population genetic analyses were performed using data from 14 reference populations from across the tick's northern distribution. In contrast to predictions, the Spitsbergen population showed high genetic diversity and significant differentiation from reference populations, suggesting long-term isolation. Host serology also demonstrated a high exposure rate to Lyme disease spirochaetes (Bbsl). Targeted PCR and sequencing confirmed the presence of Borrelia garinii in a Spitsbergen tick, demonstrating the presence of Lyme disease bacteria in the high Arctic for the first time. Taken together, results contradict the notion that I. uriae has recently expanded into the high Arctic. Rather, this tick has likely been present for some time, maintaining relatively high population sizes and an endemic transmission cycle of Bbsl. Close future observations of population infestation/infection rates will now be necessary to relate epidemiological changes to ongoing climate modifications.


Subject(s)
Charadriiformes , Ixodes , Lyme Disease , Tick-Borne Diseases , Animals , Climate Change , Ixodes/genetics , Ixodes/microbiology , Genetics, Population
6.
Ticks Tick Borne Dis ; 13(1): 101852, 2022 01.
Article in English | MEDLINE | ID: mdl-34717114

ABSTRACT

Avian infecting piroplasms are largely under-studied compared to other hemoparasites, and this paucity of information has blurred our phylogenetic and biological comprehension of this important group as a whole. In the present study, we detected and characterized Babesia from yellow-legged gull (Larus michahellis) chicks from a colony in southern France. Based on morphological and molecular characterizations, a new Babesia species belonging to the Peircei group, a clade of avian-specific piroplasms, was identified. Due to the complexity of species delineations and the low number of parasites characterized in this clade to date, a species name was not yet attributed; we refer to it for now as Babesia sp. YLG (Yellow-Legged Gull). High prevalence (85% and 58% in 2019 and 2020, respectively) and high parasitemia (up to 20% of parasitized erythrocytes) were recorded in chicks, without any obvious clinical signs of infection. Although the 16 isolates examined had identical 18S rRNA gene sequences, six genetic variants were described based on partial cox1 sequencing, with evidence of chicks co-infected by two variants. Transmission of Babesia sp. YLG via the soft tick Ornithodoros maritimus is discussed.


Subject(s)
Babesia , Babesiosis , Charadriiformes , Animals , Babesia/genetics , Babesiosis/parasitology , Birds , Phylogeny , RNA, Ribosomal, 18S/genetics
7.
Microb Ecol ; 81(3): 770-783, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33025063

ABSTRACT

Characterising within-host microbial interactions is essential to understand the drivers that shape these interactions and their consequences for host ecology and evolution. Here, we examined the bacterial microbiota hosted by the seabird soft tick Ornithodoros maritimus (Argasidae) in order to uncover bacterial interactions within ticks and how these interactions change over tick development. Bacterial communities were characterised through next-generation sequencing of the V3-V4 hypervariable region of the bacterial 16S ribosomal RNA gene. Bacterial co-occurrence and co-exclusion were determined by analysing networks generated from the metagenomic data obtained at each life stage. Overall, the microbiota of O. maritimus was dominated by four bacterial genera, namely Coxiella, Rickettsia, Brevibacterium and Arsenophonus, representing almost 60% of the reads. Bacterial diversity increased over tick development, and adult male ticks showed higher diversity than did adult female ticks. Bacterial networks showed that co-occurrence was more frequent than co-exclusion and highlighted substantial shifts across tick life stages; interaction networks changed from one stage to the next with a steady increase in the number of interactions through development. Although many bacterial interactions appeared unstable across life stages, some were maintained throughout development and were found in both sexes, such as Coxiella and Arsenophonus. Our data support the existence of a few stable interactions in O. maritimus ticks, on top of which bacterial taxa accumulate from hosts and/or the environment during development. We propose that stable associations delineate core microbial interactions, which are likely to be responsible for key biological functions.


Subject(s)
Argasidae , Ornithodoros , Rickettsia , Animals , Birds , Female , Male , RNA, Ribosomal, 16S/genetics , Rickettsia/genetics
8.
Curr Issues Mol Biol ; 42: 97-112, 2021.
Article in English | MEDLINE | ID: mdl-33289682

ABSTRACT

The genus Borrelia consists of evolutionarily and genetically diverse bacterial species that cause a variety of diseases in humans and domestic animals. These vector-borne spirochetes can be classified into two major evolutionary groups, the Lyme borreliosis clade and the relapsing fever clade, both of which have complex transmission cycles during which they interact with multiple host species and arthropod vectors. Molecular, ecological, and evolutionary studies have each provided significant contributions towards our understanding of the natural history, biology and evolutionary genetics of Borrelia species; however, integration of these studies is required to identify the evolutionary causes and consequences of the genetic variation within and among Borrelia species. For example, molecular and genetic studies have identified the adaptations that maximize fitness components throughout the Borrelia lifecycle and enhance transmission efficacy but provide limited insights into the evolutionary pressures that have produced them. Ecological studies can identify interactions between Borrelia species and the vertebrate hosts and arthropod vectors they encounter and the resulting impact on the geographic distribution and abundance of spirochetes but not the genetic or molecular basis underlying these interactions. In this review we discuss recent findings on the evolutionary genetics from both of the evolutionarily distinct clades of Borrelia species. We focus on connecting molecular interactions to the ecological processes that have driven the evolution and diversification of Borrelia species in order to understand the current distribution of genetic and molecular variation within and between Borrelia species.


Subject(s)
Borrelia/genetics , Evolution, Molecular , Genetic Variation , Lyme Disease/microbiology , Animals , Borrelia/classification , Genetic Fitness , Host-Pathogen Interactions , Humans , Lyme Disease/epidemiology , Lyme Disease/transmission
9.
Front Vet Sci ; 7: 570157, 2020.
Article in English | MEDLINE | ID: mdl-33195558

ABSTRACT

Functional dispersal (between-site movement, with or without subsequent reproduction) is a key trait acting on the ecological and evolutionary trajectories of a species, with potential cascading effects on other members of the local community. It is often difficult to quantify, and particularly so for small organisms such as parasites. Understanding this life history trait can help us identify the drivers of population dynamics and, in the case of vectors, the circulation of associated infectious agents. In the present study, functional dispersal of the soft tick Ornithodoros maritimus was studied at a small scale, within a colony of yellow-legged gulls (Larus michahellis). Previous work showed a random distribution of infectious agents in this tick at the within-colony scale, suggesting frequent tick movement among nests. This observation contrasts with the presumed strong endophilic nature described for this tick group. By combining an experimental field study, where both nest success and tick origin were manipulated, with Capture-Mark-Recapture modeling, dispersal rates between nests were estimated taking into account tick capture probability and survival, and considering an effect of tick sex. As expected, tick survival probability was higher in successful nests, where hosts were readily available for the blood meal, than in unsuccessful nests, but capture probability was lower. Dispersal was low overall, regardless of nest state or tick sex, and there was no evidence for tick homing behavior; ticks from foreign nests did not disperse more than ticks in their nest of origin. These results confirm the strong endophilic nature of this tick species, highlighting the importance of life cycle plasticity for adjusting to changes in host availability. However, results also raise questions with respect to the previously described within-colony distribution of infectious agents in ticks, suggesting that tick dispersal either occurs over longer temporal scales and/or that transient host movements outside the breeding period result in vector exposure to a diverse range of infectious agents.

10.
Biodivers Data J ; 8: e50123, 2020.
Article in English | MEDLINE | ID: mdl-32431559

ABSTRACT

BACKGROUND: In Europe, ticks are major vectors of both human and livestock pathogens (e.g. Lyme disease, granulocytic anaplasmosis, bovine babesiosis). Agricultural landscapes, where animal breeding is a major activity, constitute a mosaic of habitat types of various quality for tick survival and are used at different frequencies by wild and domestic hosts across seasons. This habitat heterogeneity, in time and space, conditions the dynamics of these host-vector-pathogen systems and thus drives acarological risk (defined as the density of infected ticks). The principal objective of the OSCAR project (2011-2016) was to examine the links between this heterogeneity and acarological risk for humans and their domestic animals. Here, we present the data associated with this project. NEW INFORMATION: This paper reports a database on the distribution and densities of I. ricinus ticks - the most common tick species in French agricultural landscapes - and the prevalence of three tick-borne pathogens (Anaplasma phagocytophilum, Borrelia spp. and Babesia spp.) in two sites in north-western ("Zone Atelier Armorique": ZA site) and south-western ("Vallées et Coteaux de Gascogne": VG site) France. The distribution and density of ticks along a gradient of wooded habitats, as well as biotic variables, such as the presence and abundance of their principal domestic (livestock) and wild hosts (small mammals), were measured from forest cores and edges to more or less isolated hedges, all bordering meadows. Ticks, small mammals and information on local environmental conditions were collected along 90 transects in each of the two sites in spring and autumn 2012 and 2013 and in spring 2014, corresponding to the main periods of tick activity. Local environmental conditions were recorded along each tick and small mammal transect: habitat type, vegetation type and characteristics, slope and traces of livestock presence. Samples consisted of questing ticks collected on the vegetation (mainly I. ricinus nymphs), biopsies of captured small mammals and ticks fixed on small mammals. In the VG site, livestock occurrence and abundance were recorded each week along each tick transect.A total of 29004 questing ticks and 1230 small mammals were captured during the study across the two sites and over the five field campaigns. All questing nymphs (N = 12287) and questing adults (N = 646) were identified to species. Ticks from small mammals (N = 1359) were also identified to life stage. Questing nymphs (N = 4518 I. ricinus) and trapped small mammals (N = 908) were analysed for three pathogenic agents: A. phagocytophilum, Borrelia spp. and Babesia spp.In the VG site, the average prevalence in I. ricinus nymphs for A. phagocytophilum, Borrelia spp. and Babesia spp. were, respectively 1.9% [95% CI: 1.2-2.5], 2.5% [95% CI: 1.8-3.2] and 2.7% [95% CI: 2.0-3.4]. In small mammals, no A. phagocytophilum was detected, but the prevalence for Borrelia spp. was 4.2% [95% CI: 0.9-7.5]. On this site, there was no screening of small mammals for Babesia spp. In ZA site, the average prevalence in nymphs for A. phagocytophilum, Borrelia spp. and Babesia were, respectively 2.2% [95% CI: 1.6-2.7], 3.0% [95% CI: 2.3-3.6] and 3.1% [95% CI: 2.5-3.8]. In small mammals, the prevalence of A. phagocytophilum and Borrelia spp. were, respectively 6.9% [95% CI: 4.9-8.9] and 4.1% [95% CI: 2.7-5.9]. A single animal was found positive for Babesia microti at this site amongst the 597 tested.

11.
Sci Rep ; 9(1): 12923, 2019 09 09.
Article in English | MEDLINE | ID: mdl-31501478

ABSTRACT

Hard ticks are widely distributed across temperate regions, show strong variation in host associations, and are potential vectors of a diversity of medically important zoonoses, such as Lyme disease. To address unresolved issues with respect to the evolutionary relationships among certain species or genera, we produced novel RNA-Seq data sets for nine different Ixodes species. We combined this new data with 18 data sets obtained from public databases, both for Ixodes and non-Ixodes hard tick species, using soft ticks as an outgroup. We assembled transcriptomes (for 27 species in total), predicted coding sequences and identified single copy orthologues (SCO). Using Maximum-likelihood and Bayesian frameworks, we reconstructed a hard tick phylogeny for the nuclear genome. We also obtained a mitochondrial DNA-based phylogeny using published genome sequences and mitochondrial sequences derived from the new transcriptomes. Our results confirm previous studies showing that the Ixodes genus is monophyletic and clarify the relationships among Ixodes sub-genera. This work provides a baseline for studying the evolutionary history of ticks: we indeed found an unexpected acceleration of substitutions for mitochondrial sequences of Prostriata, and for nuclear and mitochondrial genes of two species of Rhipicephalus, which we relate with patterns of genome architecture and changes of life-cycle, respectively.


Subject(s)
Ixodidae/classification , Ixodidae/genetics , Phylogeny , Transcriptome , Animals , Biological Evolution , Computational Biology/methods , Evolution, Molecular , Gene Expression Profiling , Genes, Mitochondrial , High-Throughput Nucleotide Sequencing
12.
Adv Mar Biol ; 82: 1-50, 2019.
Article in English | MEDLINE | ID: mdl-31229148

ABSTRACT

Parasites are ubiquitous in the environment, and can cause negative effects in their host species. Importantly, seabirds can be long-lived and cross multiple continents within a single annual cycle, thus their exposure to parasites may be greater than other taxa. With changing climatic conditions expected to influence parasite distribution and abundance, understanding current level of infection, transmission pathways and population-level impacts are integral aspects for predicting ecosystem changes, and how climate change will affect seabird species. In particular, a range of micro- and macro-parasites can affect seabird species, including ticks, mites, helminths, viruses and bacteria in gulls, terns, skimmers, skuas, auks and selected phalaropes (Charadriiformes), tropicbirds (Phaethontiformes), penguins (Sphenisciformes), tubenoses (Procellariiformes), cormorants, frigatebirds, boobies, gannets (Suliformes), and pelicans (Pelecaniformes) and marine seaducks and loons (Anseriformes and Gaviiformes). We found that the seabird orders of Charadriiformes and Procellariiformes were most represented in the parasite-seabird literature. While negative effects were reported in seabirds associated with all the parasite groups, most effects have been studied in adults with less information known about how parasites may affect chicks and fledglings. We found studies most often reported on negative effects in seabird hosts during the breeding season, although this is also the time when most seabird research occurs. Many studies report that external factors such as condition of the host, pollution, and environmental conditions can influence the effects of parasites, thus cumulative effects likely play a large role in how parasites influence seabirds at both the individual and population level. With an increased understanding of parasite-host dynamics it is clear that major environmental changes, often those associated with human activities, can directly or indirectly affect the distribution, abundance, or virulence of parasites and pathogens.


Subject(s)
Birds/parasitology , Host-Parasite Interactions/physiology , Animals , Birds/virology , Oceans and Seas , Research/statistics & numerical data
13.
Ticks Tick Borne Dis ; 10(4): 798-804, 2019 06.
Article in English | MEDLINE | ID: mdl-30922601

ABSTRACT

Ticks are commonly infected by Coxiella-like endosymbionts (Coxiella-LE) which are thought to supply missing B vitamin nutrients required for blood digestion.While this nutritional symbiosis is essential for the survival and reproduction of infected tick species, our knowledge of where Coxiella-LE is localized in tick tissues is partial at best since previous studies have focused on a limited number of Asian or American tick species. To fill this gap, we investigated the tissue localization of Coxiella-LE in three European tick species, Ornithodoros maritimus, Dermacentor marginatus and Ixodes hexagonus, using a diagnostic fluorescence in situ hybridization (FISH) assay, combined with PCR-based detection. Specific fluorescent foci were observed in several tick tissues. We visualized a pronounced tissue tropism of Coxiella-LE for tick ovaries and Malpighian tubules, a pattern suggestive of a high degree of lifestyle specialization toward mutualism: infection of the ovaries is indicative of transovarial transmission, whereas infection of the Malpighian tubules suggests a nutritional function. We postulate that Malpighian tubules are key organs for the nutritional symbiosis, notably the synthesis of B vitamins by Coxiella-LE, whereas the infection of the ovaries ensures vertical transmission of the symbionts to future generations. We also detected occasional infections in other organs, such as salivary glands and the midgut. Finally, we discuss the potential significance of the different tissue tropism for tick biology.


Subject(s)
Coxiella/isolation & purification , Symbiosis , Ticks/microbiology , Animals , Coxiella/physiology , DNA, Bacterial , Dermacentor/anatomy & histology , Dermacentor/microbiology , Europe , Female , In Situ Hybridization, Fluorescence , Ixodidae/anatomy & histology , Ixodidae/microbiology , Malpighian Tubules/microbiology , Ovary/microbiology , Phylogeny , Salivary Glands/microbiology , Ticks/anatomy & histology
14.
Exp Appl Acarol ; 77(2): 215-228, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30805817

ABSTRACT

The genetic structure of populations of the tick Amblyomma ovale from five distinct areas of the Brazilian Atlantic rainforest was evaluated via DNA sequencing and associated with the presence of domestic dogs acting as hosts at the edge of forest fragments. Ticks were collected from domestic dogs and from the environment between 2015 and 2017. Four collection areas were located in the surroundings and within the Serra do Mar State Park, São Paulo State (23°37'21"S, 45°24'43"W), where dogs were bimonthly monitored along 2 years using camera traps and GSM trackers. To determine the spatial limits of genetic structure, ticks collected upon dogs living near the Serra do Baturié, Ceará State (4°15'40"S, 38°55'54"W) were included as well. A total of 39 haplotypes of 16S rRNA and Cox 1 mitochondrial genes sequences were observed, with 27 of them coming from areas within the Serra do Mar State Park. No haplotype was shared between the Serra do Mar and the Serra do Baturié indicating isolation of tick populations at the scale of 2000 km. Although three different haplotype lineages of A. ovale occurred within the Serra do Mar State Park, no genetic structure was found across the study sites within this park, suggesting high tick gene flow across a range of 45 km. Monitoring data from domestic dogs and wild carnivores showed that these species share the same habitats at the forest edge, with dogs playing a likely limited role in tick dispersal. Our findings have important implications for understanding the genetic structure of wide spread A. ovale along Brazilian rainforest remnants, which can further be associated to tick-borne infectious agents, such as Rickettsia parkeri, and used for predicting future patterns of tick diversity in the Brazilian Atlantic rainforest.


Subject(s)
Dog Diseases/transmission , Gene Flow , Ixodidae/genetics , Tick Infestations/veterinary , Animals , Brazil , Dog Diseases/parasitology , Dogs , Electron Transport Complex IV/analysis , Female , Genes, Mitochondrial , Male , RNA, Bacterial/analysis , RNA, Ribosomal, 16S/analysis , Rainforest , Tick Infestations/parasitology , Tick Infestations/transmission
16.
BMC Evol Biol ; 18(1): 99, 2018 06 19.
Article in English | MEDLINE | ID: mdl-29921216

ABSTRACT

BACKGROUND: In host-parasite systems, relative dispersal rates condition genetic novelty within populations and thus their adaptive potential. Knowledge of host and parasite dispersal rates can therefore help us to understand current interaction patterns in wild populations and why these patterns shift over time and space. For generalist parasites however, estimates of dispersal rates depend on both host range and the considered spatial scale. Here, we assess the relative contribution of these factors by studying the population genetic structure of a common avian ectoparasite, the hen flea Ceratophyllus gallinae, exploiting two hosts that are sympatric in our study population, the great tit Parus major and the collared flycatcher Ficedula albicollis. Previous experimental studies have indicated that the hen flea is both locally maladapted to great tit populations and composed of subpopulations specialized on the two host species, suggesting limited parasite dispersal in space and among hosts, and a potential interaction between these two structuring factors. RESULTS: C. gallinae fleas were sampled from old nests of the two passerine species in three replicate wood patches and were genotyped at microsatellite markers to assess population genetic structure at different scales (among individuals within a nest, among nests and between host species within a patch and among patches). As expected, significant structure was found at all spatial scales and between host species, supporting the hypothesis of limited dispersal in this parasite. Clustering analyses and estimates of relatedness further suggested that inbreeding regularly occurs within nests. Patterns of isolation by distance within wood patches indicated that flea dispersal likely occurs in a stepwise manner among neighboring nests. From these data, we estimated that gene flow in the hen flea is approximately half that previously described for its great tit hosts. CONCLUSION: Our results fall in line with predictions based on observed patterns of adaptation in this host-parasite system, suggesting that parasite dispersal is limited and impacts its adaptive potential with respect to its hosts. More generally, this study sheds light on the complex interaction between parasite gene flow, local adaptation and host specialization within a single host-parasite system.


Subject(s)
Adaptation, Physiological , Gene Flow , Parasites/genetics , Parasites/physiology , Siphonaptera/genetics , Siphonaptera/physiology , Animals , Chickens , Discriminant Analysis , Genetic Loci , Genetic Markers , Genetic Variation , Genetics, Population , Geography , Host Specificity/genetics , Host-Parasite Interactions/genetics , Microsatellite Repeats , Principal Component Analysis , Songbirds/parasitology
17.
Parasit Vectors ; 10(1): 375, 2017 Aug 04.
Article in English | MEDLINE | ID: mdl-28778181

ABSTRACT

BACKGROUND: When colonization and gene flow depend on host-mediated dispersal, a key factor affecting vector dispersal potential is the time spent on the host for the blood meal, a characteristic that can vary strongly among life history stages. Using a 2-patch vector-pathogen population model and seabird ticks as biological examples, we explore how vector colonization rates and the spread of infectious agents may be shaped by life stage-dependent dispersal. We contrast hard (Ixodidae) and soft (Argasidae) tick systems, which differ strongly in blood- feeding traits. RESULTS: We find that vector life history characteristics (i.e. length of blood meal) and demographic constraints (Allee effects) condition the colonization potential of ticks; hard ticks, which take a single, long blood meal per life stage, should have much higher colonization rates than soft ticks, which take repeated short meals. Moreover, this dispersal potential has direct consequences for the spread of vector-borne infectious agents, in particular when transmission is transovarial. CONCLUSIONS: These results have clear implications for predicting the dynamics of vector and disease spread in the context of large-scale environmental change. The findings highlight the need to include life-stage dispersal in models that aim to predict species and disease distributions, and provide testable predictions related to the population genetic structure of vectors and pathogens along expansion fronts.


Subject(s)
Arachnid Vectors/physiology , Birds/parasitology , Host-Parasite Interactions , Ixodes/physiology , Ornithodoros/physiology , Tick-Borne Diseases/transmission , Animal Distribution , Animals , Arachnid Vectors/growth & development , Arachnid Vectors/microbiology , Borrelia burgdorferi/genetics , Borrelia burgdorferi/physiology , Climate Change , Host Specificity , Ixodes/growth & development , Ixodes/microbiology , Life Cycle Stages , Lyme Disease/transmission , Models, Biological , Ornithodoros/growth & development , Ornithodoros/microbiology
18.
Infect Genet Evol ; 55: 31-44, 2017 11.
Article in English | MEDLINE | ID: mdl-28807858

ABSTRACT

Anaplasma phagocytophilum is a bacterial pathogen mainly transmitted by Ixodes ricinus ticks in Europe. It infects wild mammals, livestock, and, occasionally, humans. Roe deer are considered to be the major reservoir, but the genotypes they carry differ from those that are found in livestock and humans. Here, we investigated whether roe deer were the main source of the A. phagocytophilum genotypes circulating in questing I. ricinus nymphs in a fragmented agricultural landscape in France. First, we assessed pathogen prevalence in 1837 I. ricinus nymphs (sampled along georeferenced transects) and 79 roe deer. Prevalence was dramatically different between ticks and roe deer: 1.9% versus 76%, respectively. Second, using high-throughput amplicon sequencing, we characterized the diversity of the A. phagocytophilum genotypes found in 22 infected ticks and 60 infected roe deer; the aim was to determine the frequency of co-infections. Only 22.7% of infected ticks carried genotypes associated with roe deer. This finding fits with others suggesting that cattle density is the major factor explaining infected tick density. To explore epidemiological scenarios capable of explaining these patterns, we constructed compartmental models that focused on how A. phagocytophilum exposure and infection dynamics affected pathogen prevalence in roe deer. At the exposure levels predicted by the results of this study and the literature, the high prevalence in roe deer was only seen in the model in which superinfections could occur during all infection phases and when the probability of infection post exposure was above 0.43. We then interpreted these results from the perspective of livestock and human health.


Subject(s)
Anaplasma phagocytophilum/classification , Anaplasma phagocytophilum/genetics , Animal Diseases/microbiology , Deer/microbiology , Ehrlichiosis/veterinary , Host Specificity , Livestock/microbiology , Ticks/microbiology , Agriculture , Animal Diseases/epidemiology , Animal Diseases/transmission , Animals , Bacterial Typing Techniques , Disease Reservoirs , Environmental Exposure , Genotype , Humans , Phylogeny , Prevalence , Superinfection
19.
Int J Parasitol Parasites Wildl ; 6(2): 122-130, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28620577

ABSTRACT

The epidemiology of vector-borne zoonoses depends on the movement of both hosts and vectors, which can differ greatly in intensity across spatial scales. Because of their life history traits and small size, vector dispersal may be frequent, but limited in distance. However, little information is available on vector movement patterns at local spatial scales, and particularly for ticks, transmitting the greatest diversity of recognized infectious agents. To test the degree to which ticks can disperse and disseminate pathogens at local scales, we investigated the temporal dynamics and population structure of the soft tick Ornithodoros maritimus within a colony of its seabird host, the Yellow-legged gull Larus michahellis. Ticks were repeatedly sampled at a series of nests during the host breeding season. In half of the nests, ticks were collected (removal sampling), in the other half, ticks were counted and returned to the nest. A subsample of ticks was screened for known bacteria, viruses and parasites using a high throughput real-time PCR system to examine their distribution within the colony. The results indicate a temporal dynamic in the presence of tick life stages over the season, with the simultaneous appearance of juvenile ticks and hatched chicks, but no among-nest spatial structure in tick abundance. Removal sampling significantly reduced tick numbers, but only from the fourth visit onward. Seven bacterial isolates, one parasite species and one viral isolate were detected but no spatial structure in their presence within the colony was found. These results suggest weak isolation among nests and that tick dispersal is likely frequent enough to quickly recolonize locally-emptied patches and disseminate pathogens across the colony. Vector-mediated movements at local scales may therefore play a key role in pathogen emergence and needs to be considered in conjunction with host movements for predicting pathogen circulation and for establishing effective control strategies.

20.
BMC Genomics ; 18(1): 460, 2017 06 13.
Article in English | MEDLINE | ID: mdl-28610613

ABSTRACT

BACKGROUND: Gene duplication has led to a most remarkable adaptation involved in vertebrates' host-pathogen arms-race, the major histocompatibility complex (MHC). However, MHC duplication history is as yet poorly understood in non-mammalian vertebrates, including birds. RESULTS: Here, we provide evidence for the evolution of two ancient avian MHC class IIB (MHCIIB) lineages by a duplication event prior to the radiation of all extant birds >100 million years ago, and document the role of concerted evolution in eroding the footprints of the avian MHCIIB duplication history. CONCLUSIONS: Our results suggest that eroded footprints of gene duplication histories may mimic birth-death evolution and that in the avian MHC the presence of the two lineages may have been masked by elevated rates of concerted evolution in several taxa. Through the presence of a range of intermediate evolutionary stages along the homogenizing process of concerted evolution, the avian MHCIIB provides a remarkable illustration of the erosion of multigene family duplication history.


Subject(s)
Birds/genetics , Evolution, Molecular , Genes, MHC Class II/genetics , Multigene Family/genetics , Animals , Gene Duplication
SELECTION OF CITATIONS
SEARCH DETAIL
...