Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 125
Filter
2.
Mucosal Immunol ; 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38521413

ABSTRACT

The microbiome has emerged as a crucial modulator of host-immune interactions and clearly impacts tumor development and therapy efficacy. The microbiome is a double-edged sword in cancer development and therapy as both pro-tumorigenic and anti-tumorigenic bacterial taxa have been identified. The staggering number of association-based studies in various tumor types has led to an enormous amount of data that makes it difficult to identify bacteria that promote tumor development or modulate therapy efficacy from bystander bacteria. Here we aim to comprehensively summarize the current knowledge of microbiome-host immunity interactions and cancer therapy in various mucosal tissues to find commonalities and thus identify potential functionally relevant bacterial taxa. Moreover, we also review recent studies identifying specific bacteria and mechanisms through which the microbiome modulates cancer development and therapy efficacy.

3.
Cancer Cell ; 42(1): 16-34, 2024 01 08.
Article in English | MEDLINE | ID: mdl-38157864

ABSTRACT

Over the last decade, the composition of the gut microbiota has been found to correlate with the outcomes of cancer patients treated with immunotherapy. Accumulating evidence points to the various mechanisms by which intestinal bacteria act on distal tumors and how to harness this complex ecosystem to circumvent primary resistance to immune checkpoint inhibitors. Here, we review the state of the microbiota field in the context of melanoma, the recent breakthroughs in defining microbial modes of action, and how to modulate the microbiota to enhance response to cancer immunotherapy. The host-microbe interaction may be deciphered by the use of "omics" technologies, and will guide patient stratification and the development of microbiota-centered interventions. Efforts needed to advance the field and current gaps of knowledge are also discussed.


Subject(s)
Gastrointestinal Microbiome , Melanoma , Microbiota , Neoplasms , Humans , Melanoma/therapy , Neoplasms/therapy , Immunotherapy , Host Microbial Interactions
4.
Cell Rep ; 42(5): 112507, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37195866

ABSTRACT

During bloodstream infections, neutrophils home to the liver as part of an intravascular immune response to eradicate blood-borne pathogens, but the mechanisms regulating this crucial response are unknown. Using in vivo imaging of neutrophil trafficking in germ-free and gnotobiotic mice, we demonstrate that the intestinal microbiota guides neutrophil homing to the liver in response to infection mediated by the microbial metabolite D-lactate. Commensal-derived D-lactate augments neutrophil adhesion in the liver independent of granulopoiesis in bone marrow or neutrophil maturation and activation in blood. Instead, gut-to-liver D-lactate signaling primes liver endothelial cells to upregulate adhesion molecule expression in response to infection and promote neutrophil adherence. Targeted correction of microbiota D-lactate production in a model of antibiotic-induced dysbiosis restores neutrophil homing to the liver and reduces bacteremia in a model of Staphylococcus aureus infection. These findings reveal long-distance traffic control of neutrophil recruitment to the liver by microbiota-endothelium crosstalk.


Subject(s)
Endothelial Cells , Microbiota , Animals , Mice , Neutrophil Infiltration , Neutrophils/metabolism , Liver/metabolism , Endothelium , Lactates/metabolism
5.
Int J Mol Sci ; 24(8)2023 Apr 15.
Article in English | MEDLINE | ID: mdl-37108484

ABSTRACT

Diet influences the pathogenesis and clinical course of inflammatory bowel disease (IBD). The Mediterranean diet (MD) is linked to reductions in inflammatory biomarkers and alterations in microbial taxa and metabolites associated with health. We aimed to identify features of the gut microbiome that mediate the relationship between the MD and fecal calprotectin (FCP) in ulcerative colitis (UC). Weighted gene co-expression network analysis (WGCNA) was used to identify modules of co-abundant microbial taxa and metabolites correlated with the MD and FCP. The features considered were gut microbial taxa, serum metabolites, dietary components, short-chain fatty acid and bile acid profiles in participants that experienced an increase (n = 13) or decrease in FCP (n = 16) over eight weeks. WGCNA revealed ten modules containing sixteen key features that acted as key mediators between the MD and FCP. Three taxa (Faecalibacterium prausnitzii, Dorea longicatena, Roseburia inulinivorans) and a cluster of four metabolites (benzyl alcohol, 3-hydroxyphenylacetate, 3-4-hydroxyphenylacetate and phenylacetate) demonstrated a strong mediating effect (ACME: -1.23, p = 0.004). This study identified a novel association between diet, inflammation and the gut microbiome, providing new insights into the underlying mechanisms of how a MD may influence IBD. See clinicaltrials.gov (NCT04474561).


Subject(s)
Colitis, Ulcerative , Diet, Mediterranean , Inflammatory Bowel Diseases , Humans , Colitis, Ulcerative/microbiology , Inflammatory Bowel Diseases/microbiology , Inflammation/genetics , Biomarkers , Feces/microbiology
6.
Nat Med ; 29(4): 1017-1027, 2023 04.
Article in English | MEDLINE | ID: mdl-36894652

ABSTRACT

Critically ill patients in intensive care units experience profound alterations of their gut microbiota that have been linked to a high risk of hospital-acquired (nosocomial) infections and adverse outcomes through unclear mechanisms. Abundant mouse and limited human data suggest that the gut microbiota can contribute to maintenance of systemic immune homeostasis, and that intestinal dysbiosis may lead to defects in immune defense against infections. Here we use integrated systems-level analyses of fecal microbiota dynamics in rectal swabs and single-cell profiling of systemic immune and inflammatory responses in a prospective longitudinal cohort study of critically ill patients to show that the gut microbiota and systemic immunity function as an integrated metasystem, where intestinal dysbiosis is coupled to impaired host defense and increased frequency of nosocomial infections. Longitudinal microbiota analysis by 16s rRNA gene sequencing of rectal swabs and single-cell profiling of blood using mass cytometry revealed that microbiota and immune dynamics during acute critical illness were highly interconnected and dominated by Enterobacteriaceae enrichment, dysregulated myeloid cell responses and amplified systemic inflammation, with a lesser impact on adaptive mechanisms of host defense. Intestinal Enterobacteriaceae enrichment was coupled with impaired innate antimicrobial effector responses, including hypofunctional and immature neutrophils and was associated with an increased risk of infections by various bacterial and fungal pathogens. Collectively, our findings suggest that dysbiosis of an interconnected metasystem between the gut microbiota and systemic immune response may drive impaired host defense and susceptibility to nosocomial infections in critical illness.


Subject(s)
Cross Infection , Microbiota , Humans , Mice , Animals , Critical Illness , Longitudinal Studies , Prospective Studies , Dysbiosis/microbiology , RNA, Ribosomal, 16S/genetics , Microbiota/genetics , Enterobacteriaceae
7.
Semin Immunol ; 67: 101755, 2023 05.
Article in English | MEDLINE | ID: mdl-36989542

ABSTRACT

Our microbiota has a critical role in shaping host immunity. Microbes that reside in the gut harbor a large metabolic arsenal to aid in physiological functions of the host. Microbial metabolites, which are products of microbial metabolism, such as short chain fatty acids (SCFA), purine metabolites, cyclic dinucleotides, tryptophan derivatives, and secondary bile acids, can tailor the host immune cell landscape in homeostasis and during cancer immunotherapy. The critical role of the microbiome in aiding immune checkpoint blockade therapies has become clearer over the past few years, with the most recent studies providing more detailed mechanistic insight on how microbes and their metabolites control the outcome of immunotherapy. This review summarizes recent studies on how microbial metabolites orchestrate immune responses during cancer immunotherapies.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Neoplasms , Humans , Immunotherapy , Homeostasis , Neoplasms/therapy
8.
Nat Commun ; 14(1): 1348, 2023 03 11.
Article in English | MEDLINE | ID: mdl-36906623

ABSTRACT

Commensal bacteria are major contributors to mammalian metabolism. We used liquid chromatography mass spectrometry to study the metabolomes of germ-free, gnotobiotic, and specific-pathogen-free mice, while also evaluating the influence of age and sex on metabolite profiles. Microbiota modified the metabolome of all body sites and accounted for the highest proportion of variation within the gastrointestinal tract. Microbiota and age explained similar amounts of variation the metabolome of urine, serum, and peritoneal fluid, while age was the primary driver of variation in the liver and spleen. Although sex explained the least amount of variation at all sites, it had a significant impact on all sites except the ileum. Collectively, these data illustrate the interplay between microbiota, age, and sex in the metabolic phenotypes of diverse body sites. This provides a framework for interpreting complex metabolic phenotypes and will help guide future studies into the role that the microbiome plays in disease.


Subject(s)
Metabolome , Microbiota , Mice , Animals , Gastrointestinal Tract/microbiology , Germ-Free Life , Specific Pathogen-Free Organisms , Metabolomics/methods , Mammals
9.
Am J Respir Crit Care Med ; 207(1): 38-49, 2023 01 01.
Article in English | MEDLINE | ID: mdl-35926164

ABSTRACT

Rationale: Coronavirus disease 2019 (COVID-19) can lead to acute respiratory distress syndrome with fatal outcomes. Evidence suggests that dysregulated immune responses, including autoimmunity, are key pathogenic factors. Objectives: To assess whether IgA autoantibodies target lung-specific proteins and contribute to disease severity. Methods: We collected 147 blood, 9 lung tissue, and 36 BAL fluid samples from three tertiary hospitals in Switzerland and one in Germany. Severe COVID-19 was defined by the need to administer oxygen. We investigated the presence of IgA autoantibodies and their effects on pulmonary surfactant in COVID-19 using the following methods: immunofluorescence on tissue samples, immunoprecipitations followed by mass spectrometry on BAL fluid samples, enzyme-linked immunosorbent assays on blood samples, and surface tension measurements with medical surfactant. Measurements and Main Results: IgA autoantibodies targeting pulmonary surfactant proteins B and C were elevated in patients with severe COVID-19 but not in patients with influenza or bacterial pneumonia. Notably, pulmonary surfactant failed to reduce surface tension after incubation with either plasma or purified IgA from patients with severe COVID-19. Conclusions: Our data suggest that patients with severe COVID-19 harbor IgA autoantibodies against pulmonary surfactant proteins B and C and that these autoantibodies block the function of lung surfactant, potentially contributing to alveolar collapse and poor oxygenation.


Subject(s)
COVID-19 , Pulmonary Surfactants , Humans , Pulmonary Surfactants/metabolism , Bronchoalveolar Lavage Fluid/chemistry , Surface-Active Agents , Autoantibodies , Immunoglobulin A
10.
Mucosal Immunol ; 15(6): 1085-1094, 2022 06.
Article in English | MEDLINE | ID: mdl-36065057

ABSTRACT

The gut microbiota influences host responses at practically every level, and as research into host-microbe interactions expands, it is not surprising that we are uncovering similar roles for the microbiota at other barrier sites, such as the lung and skin. Using standard laboratory mice to assess host-microbe interactions, or even host intrinsic responses, can be challenging, as slight variations in the microbiota can affect experimental outcomes. When it comes to designing and selecting an appropriate level of microbial diversity and community structure for colonization of our laboratory rodents, we have more choices available to us than ever before. Here we will discuss the different approaches used to modulate microbial complexity that are available to study host-microbe interactions. We will describe how different models have been used to answer distinct biological questions, covering the entire microbial spectrum, from germ-free to wild.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Mice , Animals , Gastrointestinal Microbiome/physiology , Host Microbial Interactions , Mucous Membrane
11.
Immunity ; 55(7): 1250-1267.e12, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35709757

ABSTRACT

The intestine harbors a large population of resident eosinophils, yet the function of intestinal eosinophils has not been explored. Flow cytometry and whole-mount imaging identified eosinophils residing in the lamina propria along the length of the intestine prior to postnatal microbial colonization. Microscopy, transcriptomic analysis, and mass spectrometry of intestinal tissue revealed villus blunting, altered extracellular matrix, decreased epithelial cell turnover, increased gastrointestinal motility, and decreased lipid absorption in eosinophil-deficient mice. Mechanistically, intestinal epithelial cells released IL-33 in a microbiota-dependent manner, which led to eosinophil activation. The colonization of germ-free mice demonstrated that eosinophil activation in response to microbes regulated villous size alterations, macrophage maturation, epithelial barrier integrity, and intestinal transit. Collectively, our findings demonstrate a critical role for eosinophils in facilitating the mutualistic interactions between the host and microbiota and provide a rationale for the functional significance of their early life recruitment in the small intestine.


Subject(s)
Communicable Diseases , Microbiota , Animals , Eosinophils , Homeostasis , Intestinal Mucosa , Intestine, Small , Mice
12.
Cancers (Basel) ; 14(11)2022 May 31.
Article in English | MEDLINE | ID: mdl-35681702

ABSTRACT

The gut microbiota plays a role in shaping overall host health and response to several cancer treatments. Factors, such as diet, exercise, and chemotherapy, can alter the gut microbiota. In the present study, the Alberta Cancer Exercise (ACE) program was investigated as a strategy to favorably modify the gut microbiota of breast cancer survivors who had received chemotherapy. Subsequently, the ability of post-exercise gut microbiota, alone or with prebiotic fiber supplementation, to influence breast cancer outcomes was interrogated using fecal microbiota transplant (FMT) in germ-free mice. While cancer survivors experienced little gut microbial change following ACE, in the mice, tumor volume trended consistently lower over time in mice colonized with post-exercise compared to pre-exercise microbiota with significant differences on days 16 and 22. Beta diversity analysis revealed that EO771 breast tumor cell injection and Paclitaxel chemotherapy altered the gut microbial communities in mice. Enrichment of potentially protective microbes was found in post-exercise microbiota groups. Tumors of mice colonized with post-exercise microbiota exhibited more favorable cytokine profiles, including decreased vascular endothelial growth factor (VEGF) levels. Beneficial microbial and molecular outcomes were augmented with prebiotic supplementation. Exercise and prebiotic fiber demonstrated adjuvant action, potentially via an enhanced anti-tumor immune response modulated by advantageous gut microbial shifts.

14.
PLoS One ; 17(4): e0267093, 2022.
Article in English | MEDLINE | ID: mdl-35443015

ABSTRACT

Short chain fatty acids (SCFAs; including acetate, propionate, and butyrate) are an important class of biological molecules that play a major role in modulating host-microbiome interactions. Despite significant research into SCFA-mediated biological mechanisms, absolute quantification of these molecules in their native form by liquid chromatography mass spectrometry is challenging due to their relatively poor chromatographic properties. Herein, we introduce SQUAD, an isotope-based strategy for absolute quantification of SCFAs in complex biological samples. SQUAD uses aniline derivatization in conjunction with isotope dilution and analysis by reverse-phase liquid chromatography mass spectrometry. We show that SQUAD enables absolute quantification of biologically relevant SCFAs in complex biological samples with a lower limit of detection of 40 nM and a lower limit of quantification ranging from 160 nM to 310 nM. We observed an intra- and inter-day precision under 3% (relative standard deviation) and errors in intra- and inter-day accuracy under 10%. To demonstrate this quantification strategy, we analyzed SCFAs in the caecal contents of germ free versus conventionally raised specific pathogen free (SPF) mice. We showed that acetate was the most abundant SCFA in both types of mice and was present at 200-fold higher concentration in the SPF mice. We also illustrated the use of our quantification strategy in in vitro microbial cultures from five different species of bacteria grown in Mueller Hinton media. This study illustrates the diverse SCFA production rates across microbial taxa with acetate production serving as one of the key differentiating factors across the species. In summary, we introduce an isotope dilution strategy for absolute quantification of aniline-dativized SCFAs and illustrate the utility of this approach for microbiome research.


Subject(s)
Chromatography, Reverse-Phase , Fatty Acids, Volatile , Acetates , Chromatography, Liquid/methods , Fatty Acids, Volatile/analysis , Tandem Mass Spectrometry/methods
15.
FASEB J ; 36(5): e22269, 2022 05.
Article in English | MEDLINE | ID: mdl-35344215

ABSTRACT

Dietary fiber promotes a healthy gut microbiome and shows promise in attenuating the unfavorable microbial changes resulting from a high-fat/sucrose (HFS) diet. High-fiber diets consisting of oligofructose alone (HFS/O) or in combination with ß-glucan (HFS/OB), resistant starch (HFS/OR), or ß-glucan and resistant starch (HFS/OBR) were fed to diet-induced obese rats for 8 weeks to determine if these fibers could attenuate the obese phenotype. Only the HFS/O group displayed a decrease in body weight and body fat, but all fiber interventions improved insulin sensitivity and cognitive function. The HFS/O diet was the least effective at improving cognitive function and only the HFS/OB group showed improvements in glucose tolerance, thus highlighting the differential effects of fiber types. Hippocampal cytokines (IL-6, IL-10) were more pronounced in the HFS/OB group which coincided with the most time spend in the open arms of the elevated plus maze. All fiber groups showed an increase in beneficial Bifidobacterium and Lactobacillus abundance while the HFS group showed higher abundance of Clostridium. Fecal microbiota transplant from fiber-treated rats into germ-free mice did not alter body composition in the mice but did result in a higher abundance of Bacteroides in the HFS/O and HFS/OB groups compared to HFS. The HFS/OB recipient mice also had higher insulin sensitivity compared to the other groups. This study highlights the influence of dietary fiber type on metabolic and cognitive outcomes suggesting that the type of supplementation (single or combined fibers) could be tailored to specific targeted outcomes.


Subject(s)
Insulin Resistance , beta-Glucans , Animals , Cognition , Diet, High-Fat/adverse effects , Dietary Fiber/pharmacology , Mice , Obesity/metabolism , Rats , Resistant Starch , Sucrose
16.
BMJ Open Gastroenterol ; 9(1)2022 Jan.
Article in English | MEDLINE | ID: mdl-35046093

ABSTRACT

INTRODUCTION: Dietary patterns that might induce remission in patients with active Crohn's disease (CD) are of interest to patients, but studies are limited in the published literature. We aim to explore the efficacy of the CD therapeutic dietary intervention (CD-TDI), a novel dietary approach developed from best practices and current evidence, to induce clinical and biomarker remission in adult patients with active CD. METHODS AND ANALYSIS: This study is a 13-week, multicentre, randomised controlled trial in patients with mild-to-moderate active CD at baseline. One hundred and two patients will be block randomised, by sex, 2:1 to the intervention (CD-TDI) or conventional management. Coprimary outcomes are clinical and biomarker remission, defined as a Harvey Bradshaw Index of <5 and a faecal calprotectin of <250 µg/g, respectively.Secondary outcomes include gut microbiota diversity and composition, faecal short-chain fatty acids, regulatory macrophage function, serum and faecal metabolomics, C reactive protein, peripheral blood mononuclear cell gene expression profiles, quality of life, sedentary time and physical activity at 7 and/or 13 weeks. Predictive models of clinical response to a CD-TDI will be investigated. ETHICS AND DISSEMINATION: The research protocol was approved by the Conjoint Health Research Ethics Board at the University of Calgary (REB19-0402) and the Health Research Ethics Board-Biomedical Panel at the University of Alberta (Pro00090772). Study findings will be presented at national and international conferences, submitted for publication in abstracts and manuscripts, shared on social media and disseminated through patient-education materials. TRIAL REGISTRATION NUMBER: NCT04596566.


Subject(s)
Crohn Disease , Adult , Feces , Female , Humans , Leukocyte L1 Antigen Complex , Leukocytes, Mononuclear , Male , Multicenter Studies as Topic , Quality of Life , Randomized Controlled Trials as Topic
17.
Cell ; 184(21): 5301-5303, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34624223

ABSTRACT

The gut microbiota has been shown to promote the efficacy of cancer therapy through regulating adaptive immune responses. In this issue of Cell, Lam et al. provide new evidence demonstrating that specific gut bacteria also reprogram the innate immune tumor microenvironment to enhance the efficacy of cancer therapies.


Subject(s)
Microbiota , Neoplasms , Humans , Immunity , Monocytes , Neoplasms/therapy , Tumor Microenvironment
18.
Oncoimmunology ; 10(1): 1945202, 2021.
Article in English | MEDLINE | ID: mdl-34367729

ABSTRACT

Squamous cell carcinoma of the tonsil is one of the most frequent cancers of the oropharynx. The escalating rate of tonsil cancer during the last decades is associated with the increase of high risk-human papilloma virus (HR-HPV) infections. While the microbiome in oropharyngeal malignant diseases has been characterized to some extent, the microbial colonization of HR-HPV-associated tonsil cancer remains largely unknown. Using 16S rRNA gene amplicon sequencing, we have characterized the microbiome of human palatine tonsil crypts in patients suffering from HR-HPV-associated tonsil cancer in comparison to a control cohort of adult sleep apnea patients. We found an increased abundance of the phyla Firmicutes and Actinobacteria in tumor patients, whereas the abundance of Spirochetes and Synergistetes was significantly higher in the control cohort. Furthermore, the accumulation of several genera such as Veillonella, Streptococcus and Prevotella_7 in tonsillar crypts was associated with tonsil cancer. In contrast, Fusobacterium, Prevotella and Treponema_2 were enriched in sleep apnea patients. Machine learning-based bacterial species analysis indicated that a particular bacterial composition in tonsillar crypts is tumor-predictive. Species-specific PCR-based validation in extended patient cohorts confirmed that differential abundance of Filifactor alocis and Prevotella melaninogenica is a distinct trait of tonsil cancer. This study shows that tonsil cancer patients harbor a characteristic microbiome in the crypt environment that differs from the microbiome of sleep apnea patients on all phylogenetic levels. Moreover, our analysis indicates that profiling of microbial communities in distinct tonsillar niches provides microbiome-based avenues for the diagnosis of tonsil cancer.


Subject(s)
Carcinoma, Squamous Cell , Microbiota , Tonsillar Neoplasms , Clostridiales , Humans , Microbiota/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics
19.
Front Immunol ; 12: 676255, 2021.
Article in English | MEDLINE | ID: mdl-34113350

ABSTRACT

Autism spectrum disorders (ASD) are serious, highly variable neurodevelopmental disorders, commonly characterized by the manifestation of specific behavioral abnormalities, such as stereotypic behaviors and deficits in social skills, including communication. Although the neurobiological basis for ASD has attracted attention in recent decades, the role of microglial cells, which are the main resident myeloid cell population in the brain, is still controversial and underexplored. Microglia play several fundamental roles in orchestrating brain development and homeostasis. As such, alterations in the intrinsic functions of these cells could be one of the driving forces responsible for the development of various neurodevelopmental disorders, including ASD. Microglia are highly sensitive to environmental cues. Amongst the environmental factors known to influence their intrinsic functions, the gut microbiota has emerged as a central player, controlling both microglial maturation and activation. Strikingly, there is now compelling data suggesting that the intestinal microbiota can play a causative role in driving the behavioural changes associated with ASD. Not only is intestinal dysbiosis commonly reported in ASD patients, but therapies targeting the microbiome can markedly alleviate behavioral symptoms. Here we explore the emerging mechanisms by which altered microglial functions could contribute to several major etiological factors of ASD. We then demonstrate how pre- and postnatal environmental stimuli can modulate microglial cell phenotype and function, underpinning the notion that reciprocal interactions between microglia and intestinal microbes could play a crucial role in ASD aetiology.


Subject(s)
Autism Spectrum Disorder/etiology , Gastrointestinal Microbiome/physiology , Microglia/physiology , Animals , Autism Spectrum Disorder/immunology , Autism Spectrum Disorder/microbiology , Dysbiosis , Humans
20.
STAR Protoc ; 2(2): 100536, 2021 06 18.
Article in English | MEDLINE | ID: mdl-34027493

ABSTRACT

Gnotobiology has revolutionized the study of microbiota-host interactions. This protocol explains how to generate, maintain, and monitor gnotobiotic mice. Three monitoring methods are presented and compared: bacterial culture, microscopy to visualize the presence (or absence) of bacteria using Gram staining or DNA staining, and 16S rRNA gene amplification and sequencing. The generation and maintenance of gnotobiotic animals should be performed in a germ-free and gnotobiotic facility to guarantee sterility and precision of gnotobiotic conditions. For complete details on the use and execution of this protocol, please refer to McDonald et al., 2020.


Subject(s)
Bacteria , Germ-Free Life , Laboratory Animal Science , Animals , Bacteria/genetics , Bacteria/isolation & purification , Bacteriological Techniques , DNA, Bacterial/genetics , Laboratory Animal Science/methods , Laboratory Animal Science/standards , Mice , RNA, Ribosomal, 16S/genetics , Specific Pathogen-Free Organisms
SELECTION OF CITATIONS
SEARCH DETAIL
...