Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Lancet Infect Dis ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38679035

ABSTRACT

BACKGROUND: Dengue human infection models (DHIMs) are important tools to down-select dengue vaccine candidates and establish tetravalent efficacy before advanced clinical field trials. We aimed to provide data for the safety and immunogenicity of DHIM and evaluate dengue vaccine efficacy. METHODS: We performed an open-label, phase 1 trial at the University of Maryland (Baltimore, MD, USA). Eligible participants were healthy individuals aged 18-50 years who either previously received a tetravalent dengue purified inactivated vaccine prime followed by a live-attenuated vaccine boost (ie, the vaccinee group), or were unvaccinated flavivirus-naive participants (ie, the control group). Participants in the vaccinee group with detectable pre-challenge dengue virus-1 neutralising antibody titres and flavivirus-naive participants in the control group were inoculated with dengue virus-1 strain 45AZ5 in the deltoid region, 27-65 months following booster dosing. These participants were followed-up from days 4-16 following dengue virus-1 live virus human challenge, with daily real-time quantitative PCR specific to dengue virus-1 RNA detection, and dengue virus-1 solicited local and systemic adverse events were recorded. The primary outcomes were safety (ie, solicited local and systemic adverse events) and vaccine efficacy (ie, dengue virus-1 RNAaemia) following dengue challenge. This study is registered with ClinicalTrials.gov, number NCT04786457. FINDINGS: In January 2021, ten eligible participants were enrolled; of whom, six (60%) were in the vaccinee group and four (40%) were in the control group. Daily quantitative PCR detected dengue virus-1 RNA in nine (90%) of ten participants (five [83%] of six in the vaccinee group and all four [100%] in the control group). The mean onset of RNAaemia occurred on day 5 (SD 1·0) in the vaccinee group versus day 8 (1·5) in the control group (95% CI 1·1-4·9; p=0·007), with a trend towards reduced RNAaemia duration in the vaccinee group compared with the control group (8·2 days vs 10·5 days; 95% CI -0·08 to 4·68; p=0·056). Mild-to-moderate symptoms (nine [90%] of ten), leukopenia (eight [89%] of nine), and elevated aminotransferases (seven [78%] of nine) were commonly observed. Severe adverse events were detected only in the vaccinee group (fever ≥38·9°C in three [50%] of six, headache in one [17%], and transient grade 4 aspartate aminotransferase elevation in one [17%]). No deaths were reported. INTERPRETATION: Participants who had tetravalent dengue purified inactivated vaccine prime and live-attenuated vaccine boost were unprotected against dengue virus-1 infection and further showed increased clinical, immunological, and transcriptomic evidence for inflammation potentially mediated by pre-existing infection-enhancing antibodies. This study highlights the impact of small cohort, human challenge models studying dengue pathogenesis and downstream vaccine development. FUNDING: Military Infectious Disease Research Program and Medical Technology Enterprise Consortium and Advanced Technology International.

2.
Cell Rep ; 42(8): 112942, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37561630

ABSTRACT

Zika virus (ZIKV) is an emerging pathogen that causes devastating congenital defects. The overlapping epidemiology and immunologic cross-reactivity between ZIKV and dengue virus (DENV) pose complex challenges to vaccine design, given the potential for antibody-dependent enhancement of disease. Therefore, classification of ZIKV-specific antibody targets is of notable value. From a ZIKV-infected rhesus macaque, we identify ZIKV-reactive B cells and isolate potent neutralizing monoclonal antibodies (mAbs) with no cross-reactivity to DENV. We group these mAbs into four distinct antigenic groups targeting ZIKV-specific cross-protomer epitopes on the envelope glycoprotein. Co-crystal structures of representative mAbs in complex with ZIKV envelope glycoprotein reveal envelope-dimer epitope and unique dimer-dimer epitope targeting. All four specificities are serologically identified in convalescent humans following ZIKV infection, and representative mAbs from all four groups protect against ZIKV replication in mice. These results provide key insights into ZIKV-specific antigenicity and have implications for ZIKV vaccine, diagnostic, and therapeutic development.


Subject(s)
Dengue Virus , Dengue , Viral Vaccines , Zika Virus Infection , Zika Virus , Humans , Animals , Mice , Antibodies, Neutralizing , Epitopes , Macaca mulatta , Antibodies, Viral , Antibodies, Monoclonal , Viral Vaccines/therapeutic use , Viral Envelope Proteins/chemistry
3.
EBioMedicine ; 94: 104683, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37413891

ABSTRACT

BACKGROUND: COVID-19 vaccines have been critical for protection against severe disease following infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) but gaps remain in our understanding of the immune responses that contribute to controlling subclinical and mild infections. METHODS: Vaccinated, active-duty US military service members were enrolled in a non-interventional, minimal-risk, observational study starting in May, 2021. Clinical data, serum, and saliva samples were collected from study participants and were used to characterise the humoral immune responses to vaccination and to assess its impact on clinical and subclinical infections, as well as virologic outcomes of breakthrough infections (BTI) including viral load and infection duration. FINDINGS: The majority of VIRAMP participants had received the Pfizer COVID-19 vaccine and by January, 2022, N = 149 had a BTI. The median BTI duration (PCR+ days) was 4 days and the interquartile range was 1-8 days. Participants that were nucleocapsid seropositive prior to their BTI had significantly higher levels of binding and functional antibodies to the spike protein, shorter median duration of infections, and lower median peak viral loads compared to seronegative participants. Furthermore, levels of neutralising antibody, ACE2 blocking activity, and spike-specific IgA measured prior to BTI also correlated with the duration of infection. INTERPRETATION: We extended previous findings and demonstrate that a subset of vaccine-induced humoral immune responses, along with nucleocapsid serostatus are associated with control of SARS-CoV-2 breakthrough infections in the upper airways. FUNDING: This work was funded by the DoD Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense (JPEO-CBRND) in collaboration with the Defense Health Agency (DHA) COVID-19 funding initiative for the VIRAMP study.


Subject(s)
COVID-19 , Military Personnel , Humans , COVID-19 Vaccines , SARS-CoV-2 , Immunity, Humoral , Breakthrough Infections , Antibodies, Neutralizing , Antibodies, Viral , Vaccination
4.
Nature ; 615(7953): 678-686, 2023 03.
Article in English | MEDLINE | ID: mdl-36922586

ABSTRACT

Dengue is a major health threat and the number of symptomatic infections caused by the four dengue serotypes is estimated to be 96 million1 with annually around 10,000 deaths2. However, no antiviral drugs are available for the treatment or prophylaxis of dengue. We recently described the interaction between non-structural proteins NS3 and NS4B as a promising target for the development of pan-serotype dengue virus (DENV) inhibitors3. Here we present JNJ-1802-a highly potent DENV inhibitor that blocks the NS3-NS4B interaction within the viral replication complex. JNJ-1802 exerts picomolar to low nanomolar in vitro antiviral activity, a high barrier to resistance and potent in vivo efficacy in mice against infection with any of the four DENV serotypes. Finally, we demonstrate that the small-molecule inhibitor JNJ-1802 is highly effective against viral infection with DENV-1 or DENV-2 in non-human primates. JNJ-1802 has successfully completed a phase I first-in-human clinical study in healthy volunteers and was found to be safe and well tolerated4. These findings support the further clinical development of JNJ-1802, a first-in-class antiviral agent against dengue, which is now progressing in clinical studies for the prevention and treatment of dengue.


Subject(s)
Antiviral Agents , Dengue Virus , Dengue , Primates , Viral Nonstructural Proteins , Animals , Humans , Mice , Antiviral Agents/adverse effects , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Clinical Trials, Phase I as Topic , Dengue/drug therapy , Dengue/prevention & control , Dengue/virology , Dengue Virus/classification , Dengue Virus/drug effects , Dose-Response Relationship, Drug , Drug Resistance, Viral , In Vitro Techniques , Molecular Targeted Therapy , Primates/virology , Protein Binding/drug effects , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism , Virus Replication
5.
Front Immunol ; 12: 777672, 2021.
Article in English | MEDLINE | ID: mdl-34899736

ABSTRACT

Dengue virus (DENV) is a prevalent human pathogen, infecting approximately 400 million individuals per year and causing symptomatic disease in approximately 100 million. A distinct feature of dengue is the increased risk for severe disease in some individuals with preexisting DENV-specific immunity. One proposed mechanism for this phenomenon is antibody-dependent enhancement (ADE), in which poorly-neutralizing IgG antibodies from a prior infection opsonize DENV to increase infection of Fc gamma receptor-bearing cells. While IgM and IgG are the most commonly studied DENV-reactive antibody isotypes, our group and others have described the induction of DENV-specific serum IgA responses during dengue. We hypothesized that monomeric IgA would be able to neutralize DENV without the possibility of ADE. To test this, we synthesized IgG and IgA versions of two different DENV-reactive monoclonal antibodies. We demonstrate that isotype-switching does not affect the antigen binding and neutralization properties of the two mAbs. We show that DENV-reactive IgG, but not IgA, mediates ADE in Fc gamma receptor-positive K562 cells. Furthermore, we show that IgA potently antagonizes the ADE activity of IgG. These results suggest that levels of DENV-reactive IgA induced by DENV infection might regulate the overall IgG mediated ADE activity of DENV-immune plasma in vivo, and may serve as a predictor of disease risk.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibody-Dependent Enhancement , Dengue Virus/immunology , Dengue/immunology , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Opsonization , Animals , Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , Antibody Specificity , Chlorocebus aethiops , Dengue/metabolism , Dengue/virology , Dengue Virus/metabolism , Dengue Virus/pathogenicity , Host-Pathogen Interactions , Humans , Immunity, Humoral , Immunoglobulin A/metabolism , Immunoglobulin Class Switching , Immunoglobulin G/metabolism , K562 Cells , Vero Cells
6.
Sci Adv ; 7(42): eabg4084, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34652943

ABSTRACT

Dengue virus (DENV) is a worldwide health burden, and a safe vaccine is needed. Neutralizing antibodies bind to quaternary epitopes on DENV envelope (E) protein homodimers. However, recombinantly expressed soluble E proteins are monomers under vaccination conditions and do not present these quaternary epitopes, partly explaining their limited success as vaccine antigens. Using molecular modeling, we found DENV2 E protein mutations that induce dimerization at low concentrations (<100 pM) and enhance production yield by more than 50-fold. Cross-dimer epitope antibodies bind to the stabilized dimers, and a crystal structure resembles the wild-type (WT) E protein bound to a dimer epitope antibody. Mice immunized with the stabilized dimers developed antibodies that bind to E dimers and not monomers and elicited higher levels of DENV2-neutralizing antibodies compared to mice immunized with WT E antigen. Our findings demonstrate the feasibility of using structure-based design to produce subunit vaccines for dengue and other flaviviruses.

7.
NPJ Vaccines ; 6(1): 77, 2021 May 21.
Article in English | MEDLINE | ID: mdl-34021159

ABSTRACT

Antibody-dependent enhancement (ADE) is suspected to influence dengue virus (DENV) infection, but the role ADE plays in vaccination strategies incorporating live attenuated virus components is less clear. Using a heterologous prime-boost strategy in rhesus macaques, we examine the effect of priming with DENV purified inactivated vaccines (PIVs) on a tetravalent live attenuated vaccine (LAV). Sera exhibited low-level neutralizing antibodies (NAb) post PIV priming, yet moderate to high in vitro ADE activity. Following LAV administration, the PIV primed groups exhibited DENV-2 LAV peak viremias up to 1,176-fold higher than the mock primed group, and peak viremia correlated with in vitro ADE. Furthermore, PIV primed groups had more balanced and higher DENV-1-4 NAb seroconversion and titers than the mock primed group following LAV administration. These results have implications for the development of effective DENV vaccine prime-boost strategies and for our understanding of the role played by ADE in modulating DENV replication.

8.
PLoS Pathog ; 17(1): e1009240, 2021 01.
Article in English | MEDLINE | ID: mdl-33513191

ABSTRACT

Dengue human infection studies present an opportunity to address many longstanding questions in the field of flavivirus biology. However, limited data are available on how the immunological and transcriptional response elicited by an attenuated challenge virus compares to that associated with a wild-type DENV infection. To determine the kinetic transcriptional signature associated with experimental primary DENV-1 infection and to assess how closely this profile correlates with the transcriptional signature accompanying natural primary DENV-1 infection, we utilized scRNAseq to analyze PBMC from individuals enrolled in a DENV-1 human challenge study and from individuals experiencing a natural primary DENV-1 infection. While both experimental and natural primary DENV-1 infection resulted in overlapping patterns of inflammatory gene upregulation, natural primary DENV-1 infection was accompanied with a more pronounced suppression in gene products associated with protein translation and mitochondrial function, principally in monocytes. This suggests that the immune response elicited by experimental and natural primary DENV infection are similar, but that natural primary DENV-1 infection has a more pronounced impact on basic cellular processes to induce a multi-layered anti-viral state.


Subject(s)
Dengue Virus/immunology , Dengue/immunology , Gene Expression Regulation , Animals , Cell Line , Dengue/virology , Humans , Immunity/genetics , Inflammation/genetics , Inflammation/virology , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/virology , Sequence Analysis, RNA , Single-Cell Analysis
9.
EBioMedicine ; 54: 102733, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32315970

ABSTRACT

Antibody-mediated humoral immunity is thought to play a central role in mediating the immunopathogenesis of acute DENV infection, but limited data are available on the diversity, specificity, and functionality of the antibody response at the molecular level elicited by primary or secondary DENV infection. In order to close this functional gap in our understanding of DENV-specific humoral immunity, we utilized high-throughput single cell RNA sequencing to investigate B cells circulating in both primary and secondary natural DENV infections. We captured full-length paired immunoglobulin receptor sequence data from 9,027 B cells from a total of 6 subjects, including 2,717 plasmablasts. In addition to IgG and IgM class-switched cells, we unexpectedly found a high proportion of the DENV-elicited plasmablasts expressing IgA, principally in individuals with primary DENV infections. These IgA class-switched cells were extensively hypermutated even in individuals with a serologically confirmed primary DENV infection. Utilizing a combination of conventional biochemical assays and high-throughput shotgun mutagenesis, we determined that DENV-reactive IgA class-switched antibodies represent a significant fraction of DENV-reactive Igs generated in response to DENV infection, and that they exhibit a comparable epitope specificity to DENV-reactive IgG antibodies. These results provide insight into the molecular-level diversity of DENV-elicited humoral immunity and identify a heretofore unappreciated IgA plasmablast response to DENV infection.


Subject(s)
B-Lymphocytes/immunology , Dengue/immunology , Immunoglobulins/genetics , B-Lymphocytes/cytology , Cells, Cultured , Dengue/genetics , Humans , Immunity, Humoral , Immunoglobulins/metabolism , RNA-Seq , Single-Cell Analysis , Transcriptome
10.
PLoS Negl Trop Dis ; 14(4): e0008191, 2020 04.
Article in English | MEDLINE | ID: mdl-32267846

ABSTRACT

Dengue virus (DENV) is transmitted by infectious mosquitoes during blood-feeding via saliva containing biologically-active proteins. Here, we examined the effect of varying DENV infection modality in rhesus macaques in order to improve the DENV nonhuman primate (NHP) challenge model. NHPs were exposed to DENV-1 via subcutaneous or intradermal inoculation of virus only, intradermal inoculation of virus and salivary gland extract, or infectious mosquito feeding. The infectious mosquito feeding group exhibited delayed onset of viremia, greater viral loads, and altered clinical and immune responses compared to other groups. After 15 months, NHPs in the subcutaneous and infectious mosquito feeding groups were re-exposed to either DENV-1 or DENV-2. Viral replication and neutralizing antibody following homologous challenge were suggestive of sterilizing immunity, whereas heterologous challenge resulted in productive, yet reduced, DENV-2 replication and boosted neutralizing antibody. These results show that a more transmission-relevant exposure modality resulted in viral replication closer to that observed in humans.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Dengue/immunology , Animals , Dengue/virology , Dengue Virus/physiology , Disease Models, Animal , Female , Kinetics , Macaca mulatta/immunology , Mosquito Vectors/virology , RNA, Viral/blood , Salivary Glands/virology , Vaccination , Viral Load , Viremia/prevention & control , Virus Replication
11.
Nat Med ; 26(2): 228-235, 2020 02.
Article in English | MEDLINE | ID: mdl-32015557

ABSTRACT

Zika virus (ZIKV) has caused significant disease, with widespread cases of neurological pathology and congenital neurologic defects. Rapid vaccine development has led to a number of candidates capable of eliciting potent ZIKV-neutralizing antibodies (reviewed in refs. 1-3). Despite advances in vaccine development, it remains unclear how ZIKV vaccination affects immune responses in humans with prior flavivirus immunity. Here we show that a single-dose immunization of ZIKV purified inactivated vaccine (ZPIV)4-7 in a dengue virus (DENV)-experienced human elicited potent cross-neutralizing antibodies to both ZIKV and DENV. Using a unique ZIKV virion-based sorting strategy, we isolated and characterized multiple antibodies, including one termed MZ4, which targets a novel site of vulnerability centered on the Envelope (E) domain I/III linker region and protects mice from viremia and viral dissemination following ZIKV or DENV-2 challenge. These data demonstrate that Zika vaccination in a DENV-experienced individual can boost pre-existing flavivirus immunity and elicit protective responses against both ZIKV and DENV. ZPIV vaccination in Puerto Rican individuals with prior flavivirus experience yielded similar cross-neutralizing potency after a single vaccination, highlighting the potential benefit of ZIKV vaccination in flavivirus-endemic areas.


Subject(s)
Dengue/immunology , Tissue Donors , Viral Vaccines/therapeutic use , Zika Virus Infection/immunology , Zika Virus Infection/prevention & control , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Chlorocebus aethiops , Cross Reactions , Dengue Virus , Epitope Mapping , Female , Flavivirus/metabolism , Humans , Immunoglobulin G/chemistry , Inhibitory Concentration 50 , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Protein Binding , Protein Domains , Vaccination , Vaccines, Inactivated/therapeutic use , Vero Cells , Viremia , Zika Virus
12.
PLoS Negl Trop Dis ; 13(1): e0007060, 2019 01.
Article in English | MEDLINE | ID: mdl-30682026

ABSTRACT

Zika virus (ZIKV) recently caused a pandemic complicated by Guillain-Barre syndrome (GBS) and birth defects. ZIKV is structurally similar to the dengue viruses (DENV) and in vitro studies suggest antibody dependent enhancement occurs in ZIKV infections preceded by DENV; however, the clinical significance of this remains unclear. We undertook a PRISMA-adherent systematic review of all current human and non-human primate (NHP) data to determine if prior infection with DENV, compared to DENV-naïve hosts, is associated with a greater risk of ZIKV clinical complications or greater ZIKV peak viremia in vivo. We identified 1146 studies in MEDLINE, EMBASE and the grey literature, of which five studies were eligible. One human study indicated no increase in the risk of GBS in ZIKV infections with prior DENV exposure. Two additional human studies showed a small increase in ZIKV viremia in those with prior DENV exposure; however, this was not statistically significant nor was it associated with an increase in clinical severity or adverse pregnancy outcomes. While no meta-analysis was possible using human data, a pooled analysis of the two NHP studies leveraging extended data provided only weak evidence of a 0.39 log10 GE/mL rise in ZIKV viremia in DENV experienced rhesus macaques compared to those with no DENV exposure (p = 0.22). Using a customized quality grading criteria, we further show that no existing published human studies have offered high quality measurement of both acute ZIKV and antecedent DENV infections. In conclusion, limited human and NHP studies indicate a small and non-statistically significant increase in ZIKV viremia in DENV-experienced versus DENV-naïve hosts; however, there is no evidence that even a possible small increase in ZIKV viremia would correlate with a change in ZIKV clinical phenotype. More data derived from larger sample sizes and improved sero-assays are needed to resolve this question, which has major relevance for clinical prognosis and vaccine design.


Subject(s)
Antibodies, Viral/immunology , Dengue Virus/immunology , Dengue/virology , Zika Virus Infection/virology , Zika Virus/immunology , Animals , Antibodies, Viral/blood , Dengue/blood , Dengue/complications , Dengue Virus/genetics , Guillain-Barre Syndrome/blood , Guillain-Barre Syndrome/complications , Guillain-Barre Syndrome/virology , Humans , MEDLINE , Macaca mulatta , Mice , Models, Animal , Viremia , Zika Virus/genetics , Zika Virus Infection/blood , Zika Virus Infection/complications
13.
PLoS Pathog ; 13(8): e1006487, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28771605

ABSTRACT

Studies have demonstrated cross-reactivity of anti-dengue virus (DENV) antibodies in human sera against Zika virus (ZIKV), promoting increased ZIKV infection in vitro. However, the correlation between in vitro and in vivo findings is not well characterized. Thus, we evaluated the impact of heterotypic flavivirus immunity on ZIKV titers in biofluids of rhesus macaques. Animals previously infected (≥420 days) with DENV2, DENV4, or yellow fever virus were compared to flavivirus-naïve animals following infection with a Brazilian ZIKV strain. Sera from DENV-immune macaques demonstrated cross-reactivity with ZIKV by antibody-binding and neutralization assays prior to ZIKV infection, and promoted increased ZIKV infection in cell culture assays. Despite these findings, no significant differences between flavivirus-naïve and immune animals were observed in viral titers, neutralizing antibody levels, or immune cell kinetics following ZIKV infection. These results indicate that prior infection with heterologous flaviviruses neither conferred protection nor increased observed ZIKV titers in this non-human primate ZIKV infection model.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Flavivirus Infections/immunology , Zika Virus Infection/immunology , Animals , Cross Reactions/immunology , Enzyme-Linked Immunosorbent Assay , Flavivirus/immunology , Flavivirus Infections/pathology , Macaca mulatta , Polymerase Chain Reaction , Zika Virus/immunology , Zika Virus Infection/pathology
14.
Curr Clin Microbiol Rep ; 4(4): 208-217, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29785356

ABSTRACT

Zika and chikungunya viruses emerged as public health emergencies in the Western Hemisphere where previously they had not been reported on a large scale. Millions were infected as the viruses met with virtually no herd immunity upon emergence. PURPOSE OF THE REVIEW: We explore the histories of these two recent arbovirus experiences in South America. We then review similarly three endemic South American viruses: yellow fever, Oropouche, and Mayaro viruses. RECENT FINDINGS: We discuss the commonalities of the transmission systems and the possibility of an atypical emergence, that of New World virus to the Old World. SUMMARY: We discuss the avenues for research that would increase preparedness and efficiency of response should a South American arbovirus emerge in the Eastern Hemisphere.

15.
PLoS One ; 11(5): e0155243, 2016.
Article in English | MEDLINE | ID: mdl-27182740

ABSTRACT

Chikungunya virus is an arbovirus spread predominantly by Aedes aegypti and Ae. albopictus mosquitoes, and causes debilitating arthralgia and arthritis. While these are common manifestations during acute infection and it has been suggested they can recur in patients chronically, gaps in knowledge regarding the pathogenesis still exist. Two established mouse models were utilized (adult IRF 3/7 -/- -/- and wild-type C57BL/6J mice) to evaluate disease manifestations in bones and joints at various timepoints. Novel lesions in C57BL/6J mice consisted of periostitis (91%) and foci of cartilage of necrosis (50% of mice at 21 DPI). Additionally, at 21 DPI, 50% and 75% of mice exhibited periosteal bone proliferation affecting the metatarsal bones, apparent via histology and µCT, respectively. µCT analysis did not reveal any alterations in trabecular bone volume measurements in C57BL/6J mice. Novel lesions demonstrated in IRF 3/7 -/- -/- mice at 5 DPI included focal regions of cartilage necrosis (20%), periosteal necrosis (66%), and multifocal ischemic bone marrow necrosis (100%). Contralateral feet in 100% of mice of both strains had similar, though milder lesions. Additionally, comparison of control IRF 3/7 -/- -/- and wild-type C57BL/6J mice demonstrated differences in cortical bone. These experiments demonstrate novel manifestations of disease similar to those occurring in humans, adding insight into disease pathogenesis, and representing new potential targets for therapeutic interventions. Additionally, results demonstrate the utility of µCT in studies of bone and joint pathology and illustrate differences in bone dynamics between mouse strains.


Subject(s)
Bone Diseases/etiology , Bone Diseases/pathology , Chikungunya Fever/complications , Chikungunya Fever/virology , Chikungunya virus , Joint Diseases/etiology , Joint Diseases/pathology , Animals , Biopsy , Bone Diseases/diagnosis , Disease Models, Animal , Disease Progression , Female , Inflammation/etiology , Inflammation/pathology , Interferon Regulatory Factor-3/deficiency , Interferon Regulatory Factor-7/deficiency , Joint Diseases/diagnosis , Male , Mice , Mice, Knockout , Necrosis/etiology , Necrosis/pathology , Phenotype , X-Ray Microtomography
16.
Parasit Vectors ; 7: 252, 2014 May 30.
Article in English | MEDLINE | ID: mdl-24886023

ABSTRACT

BACKGROUND: Dengue virus (DENV) is responsible for up to approximately 300 million infections and an increasing number of deaths related to severe manifestations each year in affected countries throughout the tropics. It is critical to understand the drivers of this emergence, including the role of vector-virus interactions. When a DENV-infected Aedes aegypti mosquito bites a vertebrate, the virus is deposited along with a complex mixture of salivary proteins. However, the influence of a DENV infection upon the expectorated salivary proteome of its vector has yet to be determined. METHODS: Therefore, we conducted a proteomic analysis using 2-D gel electrophoresis coupled with mass spectrometry based protein identification comparing the naturally expectorated saliva of Aedes aegypti infected with DENV-2 relative to that of uninfected Aedes aegypti. RESULTS: Several proteins were found to be differentially expressed in the saliva of DENV-2 infected mosquitoes, in particular proteins with anti-hemostatic and pain inhibitory functions were significantly reduced. Hypothetical consequences of these particular protein reductions include increased biting rates and transmission success, and lead to alteration of transmission potential as calculated in our vectorial capacity model. CONCLUSIONS: We present our characterizations of these changes with regards to viral transmission and mosquito blood-feeding success. Further, we conclude that our proteomic analysis of Aedes aegypti saliva altered by DENV infection provides a unique opportunity to identify pro-viral impacts key to virus transmission.


Subject(s)
Aedes/physiology , Aedes/virology , Dengue Virus/physiology , Insect Proteins/metabolism , Saliva/chemistry , Animals , Dengue Virus/classification , Gene Expression Regulation , Insect Proteins/chemistry , Insect Proteins/genetics
17.
Am J Trop Med Hyg ; 90(3): 431-7, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24445208

ABSTRACT

Dengue virus (DENV) is the most important mosquito-transmitted flavivirus that is transmitted throughout the tropical and subtropical regions of the world. The primary mosquito vector of DENV in urban locations is Aedes aegypti. Key to understanding the transmission of DENV is the relationship between pathogen and vector. Accordingly, we report our preliminary characterization of the differentially expressed proteins from Ae. aegypti mosquitoes after DENV infection. We investigated the virus-vector interaction through changes in the proteome of the salivary glands of mosquitoes with disseminated DENV serotype 2 (DENV-2) infections using two-dimensional gel electrophoresis and identification by mass spectrometry. Our findings indicate that DENV-2 infection in the Ae. aegypti salivary gland alters the expression of structural, secreted, and metabolic proteins. These changes in the salivary gland proteome highlight the virally influenced environment caused by a DENV-2 infection and warrant additional investigation to determine if these differences extend to the expectorated saliva.


Subject(s)
Aedes/metabolism , Dengue Virus , Insect Vectors/metabolism , Salivary Glands/metabolism , Aedes/virology , Animals , Dengue/transmission , Dengue/virology , Electrophoresis, Gel, Two-Dimensional , Humans , Insect Vectors/virology , Mass Spectrometry , Salivary Glands/virology
18.
PLoS One ; 8(12): e81211, 2013.
Article in English | MEDLINE | ID: mdl-24312537

ABSTRACT

Norte de Santander is a region in Colombia with a high incidence of dengue virus (DENV). In this study, we examined the serum concentration of anti-Aedes salivary gland extract (SGE) antibodies as a biomarker of DENV infection and transmission, and assessed the duration of anti-SGE antibody concentration after exposure to the vector ceased. We also determined whether SGE antibody concentration could differentiate between positive and negative DENV infected individuals and whether there are differences in exposure for each DENV serotype. We observed a significant decrease in the concentration of IgG antibodies at least 40 days after returning to an "Ae. aegypti-free" area. In addition, we found significantly higher anti-SGE IgG concentrations in DENV positive patients with some difference in exposure to mosquito bites among DENV serotypes. We conclude that the concentration of IgG antibodies against SGE is an accurate indicator of risk of dengue virus transmission and disease presence.


Subject(s)
Aedes/chemistry , Antibodies/immunology , Complex Mixtures/chemistry , Dengue Virus , Immunoglobulin G/immunology , Insect Bites and Stings/immunology , Insect Vectors/chemistry , Salivary Glands/chemistry , Adult , Aedes/immunology , Animals , Antibodies/blood , Colombia/epidemiology , Complex Mixtures/immunology , Dengue/blood , Dengue/immunology , Dengue/transmission , Female , Humans , Immunoglobulin G/blood , Insect Bites and Stings/blood , Insect Bites and Stings/epidemiology , Insect Vectors/immunology , Male , Risk Factors , Salivary Glands/immunology
19.
Virol J ; 10: 127, 2013 Apr 23.
Article in English | MEDLINE | ID: mdl-23617898

ABSTRACT

BACKGROUND: Dengue virus (DENV) research has historically been hampered by the lack of a susceptible vertebrate transmission model. Recently, there has been progress towards such models using several varieties of knockout mice, particularly those deficient in type I and II interferon receptors. Based on the critical nature of the type I interferon response in limiting DENV infection establishment, we assessed the permissiveness of a mouse strain with a blunted type I interferon response via gene deficiencies in interferon regulatory factors 3 and 7 (IRF3/7 -/- -/-) with regards to DENV transmission success. We investigated the possibility of transmission to the mouse by needle and infectious mosquito, and subsequent transmission back to mosquito from an infected animal during its viremic period. METHODS: Mice were inoculated subcutaneously with non-mouse adapted DENV-2 strain 1232 and serum was tested for viral load and cytokine production each day. Additionally, mosquitoes were orally challenged with the same DENV-2 strain via artificial membrane feeder, and then allowed to forage or naïve mice. Subsequently, we determined acquisition potential by allowing naïve mosquitoes on forage on exposed mice during their viremic period. RESULTS: Both needle inoculation and infectious mosquito bite(s) resulted in 100% infection. Significant differences between these groups in viremia on the two days leading to peak viremia were observed, though no significant difference in cytokine production was seen. Through our determination of transmission and acquisition potentials, the transmission cycle (mouse-to mosquito-to mouse) was completed. We confirmed that the IRF3/7 -/- -/- mouse supports DENV replication and is competent for transmission experiments, with the ability to use a non-mouse adapted DENV-2 strain. A significant finding of this study was that this IRF3/7 -/- -/- mouse strain was able to be infected by and transmit virus to mosquitoes, thus providing means to replicate the natural transmission cycle of DENV. CONCLUSION: As there is currently no approved vaccine for DENV, public health monitoring and a greater understanding of transmission dynamics leading to outbreak events are critical. The further characterization of DENV using this model will expand knowledge of key entomological, virological and immunological components of infection establishment and transmission events.


Subject(s)
Dengue Virus/isolation & purification , Dengue Virus/pathogenicity , Dengue/transmission , Disease Models, Animal , Animals , Culicidae , Female , Mice , Mice, Knockout , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...