Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Pathog ; 16(9): e1008878, 2020 09.
Article in English | MEDLINE | ID: mdl-32946535

ABSTRACT

As an obligate intracellular pathogen, host cell invasion is paramount to Chlamydia trachomatis proliferation. While the mechanistic underpinnings of this essential process remain ill-defined, it is predicted to involve delivery of prepackaged effector proteins into the host cell that trigger plasma membrane remodeling and cytoskeletal reorganization. The secreted effector proteins TmeA and TarP, have risen to prominence as putative key regulators of cellular invasion and bacterial pathogenesis. Although several studies have begun to unravel molecular details underlying the putative function of TarP, the physiological function of TmeA during host cell invasion is unknown. Here, we show that TmeA employs molecular mimicry to bind to the GTPase binding domain of N-WASP, which results in recruitment of the actin branching ARP2/3 complex to the site of chlamydial entry. Electron microscopy revealed that TmeA mutants are deficient in filopodia capture, suggesting that TmeA/N-WASP interactions ultimately modulate host cell plasma membrane remodeling events necessary for chlamydial entry. Importantly, while both TmeA and TarP are necessary for effective host cell invasion, we show that these effectors target distinct pathways that ultimately converge on activation of the ARP2/3 complex. In line with this observation, we show that a double mutant suffers from a severe entry defect nearly identical to that observed when ARP3 is chemically inhibited or knocked down. Collectively, our study highlights both TmeA and TarP as essential regulators of chlamydial invasion that modulate the ARP2/3 complex through distinct signaling platforms, resulting in plasma membrane remodeling events that are essential for pathogen uptake.


Subject(s)
Bacterial Proteins , Cell Membrane/metabolism , Chlamydia trachomatis , Wiskott-Aldrich Syndrome Protein, Neuronal/metabolism , Actin-Related Protein 2-3 Complex/genetics , Actin-Related Protein 2-3 Complex/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Membrane/genetics , Cell Membrane/pathology , Chlamydia trachomatis/genetics , Chlamydia trachomatis/metabolism , Chlamydia trachomatis/pathogenicity , HeLa Cells , Humans , Mutation , Protein Domains , Pseudopodia/genetics , Pseudopodia/metabolism , Wiskott-Aldrich Syndrome Protein, Neuronal/genetics
2.
Article in English | MEDLINE | ID: mdl-32039039

ABSTRACT

Chlamydia trachomatis serovars A-C infect conjunctival epithelial cells and untreated infection can lead to blindness. D-K infect genital tract epithelial cells resulting in pelvic inflammatory disease, ectopic pregnancy, and sterility while L1-L3 infect epithelial cells and macrophages, causing an invasive infection. Despite some strains of Chlamydia sharing high nucleotide sequence similarity, the bacterial and host factors that govern tissue and cellular tropism remain largely unknown. Following introduction of C. trachomatis via intercourse, epithelial cells of the vagina, foreskin, and ectocervix are exposed to large numbers of the pathogen, yet their response to infection and the dynamics of chlamydial growth in these cells has not been well-characterized compared to growth in more permissive cell types that harbor C. trachomatis. We compared intracellular replication and inclusion development of representative C. trachomatis serovars in immortalized human conjunctival epithelial, urogenital epithelial, PMA stimulated THP-1 (macrophages), and HeLa cells. We demonstrate that urogenital epithelial cells of the vagina, ectocervix, and foreskin restrict replication of serovar A while promoting robust replication and inclusion development of serovar D and L2. Macrophages restrict serovars D and A while L2 proliferates in these cells. Furthermore, we show that GM-CSF, RANTES, GROα, IL-1α, IL-1ß, IP-10, IL-8, and IL-18 are produced in a cell-type and serovar-specific manner. Collectively we have established a series of human cell lines that represent some of the first cell types to encounter C. trachomatis following exposure and show that differential production of key cytokines early during infection could regulate serovar-host cell specificity.


Subject(s)
Chlamydia Infections/metabolism , Chlamydia Infections/microbiology , Chlamydia trachomatis/classification , Chlamydia trachomatis/physiology , Cytokines/metabolism , Host-Pathogen Interactions , Inflammation Mediators/metabolism , Cell Line , HeLa Cells , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate , Macrophages/immunology , Macrophages/metabolism , Serogroup
SELECTION OF CITATIONS
SEARCH DETAIL
...