Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38496583

ABSTRACT

Epigenome editing with DNA-targeting technologies such as CRISPR-dCas9 can be used to dissect gene regulatory mechanisms and potentially treat associated disorders. For example, Prader-Willi Syndrome (PWS) is caused by loss of paternally expressed imprinted genes on chromosome 15q11.2-q13.3, although the maternal allele is intact but epigenetically silenced. Using CRISPR repression and activation screens in human induced pluripotent stem cells (iPSCs), we identified genomic elements that control expression of the PWS gene SNRPN from the paternal and maternal chromosomes. We showed that either targeted transcriptional activation or DNA demethylation can activate the silenced maternal SNRPN and downstream PWS transcripts. However, these two approaches function at unique regions, preferentially activating different transcript variants and involving distinct epigenetic reprogramming mechanisms. Remarkably, transient expression of the targeted demethylase leads to stable, long-term maternal SNRPN expression in PWS iPSCs. This work uncovers targeted epigenetic manipulations to reprogram a disease-associated imprinted locus and suggests possible therapeutic interventions.

2.
Nat Genet ; 55(12): 2211-2223, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37945901

ABSTRACT

Clinical response to adoptive T cell therapies is associated with the transcriptional and epigenetic state of the cell product. Thus, discovery of regulators of T cell gene networks and their corresponding phenotypes has potential to improve T cell therapies. Here we developed pooled, epigenetic CRISPR screening approaches to systematically profile the effects of activating or repressing 120 transcriptional and epigenetic regulators on human CD8+ T cell state. We found that BATF3 overexpression promoted specific features of memory T cells and attenuated gene programs associated with cytotoxicity, regulatory T cell function, and exhaustion. Upon chronic antigen stimulation, BATF3 overexpression countered phenotypic and epigenetic signatures of T cell exhaustion. Moreover, BATF3 enhanced the potency of CAR T cells in both in vitro and in vivo tumor models and programmed a transcriptional profile that correlates with positive clinical response to adoptive T cell therapy. Finally, we performed CRISPR knockout screens that defined cofactors and downstream mediators of the BATF3 gene network.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Neoplasms , Humans , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , CD8-Positive T-Lymphocytes , Epigenesis, Genetic
3.
bioRxiv ; 2023 May 01.
Article in English | MEDLINE | ID: mdl-37205457

ABSTRACT

The clinical response to adoptive T cell therapies is strongly associated with transcriptional and epigenetic state. Thus, technologies to discover regulators of T cell gene networks and their corresponding phenotypes have great potential to improve the efficacy of T cell therapies. We developed pooled CRISPR screening approaches with compact epigenome editors to systematically profile the effects of activation and repression of 120 transcription factors and epigenetic modifiers on human CD8+ T cell state. These screens nominated known and novel regulators of T cell phenotypes with BATF3 emerging as a high confidence gene in both screens. We found that BATF3 overexpression promoted specific features of memory T cells such as increased IL7R expression and glycolytic capacity, while attenuating gene programs associated with cytotoxicity, regulatory T cell function, and T cell exhaustion. In the context of chronic antigen stimulation, BATF3 overexpression countered phenotypic and epigenetic signatures of T cell exhaustion. CAR T cells overexpressing BATF3 significantly outperformed control CAR T cells in both in vitro and in vivo tumor models. Moreover, we found that BATF3 programmed a transcriptional profile that correlated with positive clinical response to adoptive T cell therapy. Finally, we performed CRISPR knockout screens with and without BATF3 overexpression to define co-factors and downstream factors of BATF3, as well as other therapeutic targets. These screens pointed to a model where BATF3 interacts with JUNB and IRF4 to regulate gene expression and illuminated several other novel targets for further investigation.

4.
Cell Rep ; 33(9): 108460, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33264623

ABSTRACT

Technologies to reprogram cell-type specification have revolutionized the fields of regenerative medicine and disease modeling. Currently, the selection of fate-determining factors for cell reprogramming applications is typically a laborious and low-throughput process. Therefore, we use high-throughput pooled CRISPR activation (CRISPRa) screens to systematically map human neuronal cell fate regulators. We utilize deactivated Cas9 (dCas9)-based gene activation to target 1,496 putative transcription factors (TFs) in the human genome. Using a reporter of neuronal commitment, we profile the neurogenic activity of these factors in human pluripotent stem cells (PSCs), leading to a curated set of pro-neuronal factors. Activation of pairs of TFs reveals neuronal cofactors, including E2F7, RUNX3, and LHX8, that improve conversion efficiency, subtype specificity, and maturation of neuronal cell types. Finally, using multiplexed gene regulation with orthogonal CRISPR systems, we demonstrate improved neuronal differentiation with concurrent activation and repression of target genes, underscoring the power of CRISPR-based gene regulation for programming complex cellular phenotypes.


Subject(s)
CRISPR-Cas Systems/genetics , Gene Expression Regulation/genetics , Neurons/metabolism , Transcriptional Activation/genetics , Cell Differentiation , Humans
5.
Biotechnol J ; 13(5): e1700167, 2018 May.
Article in English | MEDLINE | ID: mdl-29149479

ABSTRACT

Reducing leaky gene expression is critical for improving protein yield of recombinant bacteria and stability of engineered cellular circuits in synthetic biology. Leaky gene expression occurs when a genetic promoter is not fully repressed, leading to unintended protein synthesis in the absence of stimuli. Existing work have devised specific molecular strategies for reducing leaky gene expression of each promoter. In contrast, we describe a repurposed, modular CRISPRi system that attenuates leaky gene expression using a series of single-guide RNAs targeting the PT7/LacO1 promoter. Furthermore, we demonstrate the efficacy of CRISPRi to significantly increase the dynamic range of T7 RNA Polymerase (T7RNAP) promoters. In addition, we demonstrate that the CRISPRi system can be applied to enhance growth of bacteria that suffer from leaky expression of a toxic protein. Our work establishes a new application of CRISPRi in genomic engineering to improve the control of recombinant gene expression. The approach is potentially generalizable to other gene expression system by changing the single-guide RNAs.


Subject(s)
CRISPR-Cas Systems , DNA-Directed RNA Polymerases , Promoter Regions, Genetic , Synthetic Biology , Viral Proteins , Gene Editing , Gene Expression
SELECTION OF CITATIONS
SEARCH DETAIL
...