Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
J Nat Prod ; 87(5): 1416-1425, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38687902

ABSTRACT

In nature, proanthocyanidins (PACs) with A-type linkages are relatively rare, likely due to biosynthetic constraints in the formation of additional ether bonds to be introduced into the more common B-type precursors. However, A-type linkages confer greater structural rigidity on PACs than do B-type linkages. Prior investigations into the structure-activity relationships (SAR) describing how plant-derived PACs with B- and complex AB-type linkages affect their capacity for dentin biomodification indicate that a higher ratio of double linkages leads to a greater interaction with dentin type I collagen. Thus, A-type PACs emerge as particularly intriguing candidates for interventional functional biomaterials. This study employed a free-radical-mediated oxidation using DPPH to transform trimeric and tetrameric B-type PACs, 2 and 4, respectively, into their exclusively A-type linked analogues, 3 and 5, respectively. The structures and absolute configurations of the semisynthetic products, including the new all-A-type tetramer 5, were determined by comprehensive spectroscopic analysis. Additionally, molecular modeling investigated the conformational characteristics of all trimers and tetramers, 1-5. Our findings suggest that the specific interflavan linkages significantly impact the flexibility and low-energy conformations of the connected monomeric units, which conversely can affect the bioactive conformations relevant for dentin biomodification.


Subject(s)
Proanthocyanidins , Proanthocyanidins/chemistry , Molecular Structure , Structure-Activity Relationship
2.
Curr Opin Struct Biol ; 82: 102654, 2023 10.
Article in English | MEDLINE | ID: mdl-37542910

ABSTRACT

Compared to soluble protein counterparts, the understanding of membrane protein stability, solvent interactions, and function are not as well understood. Recent advancements in labeling, expression, and stabilization of membrane proteins have enabled solution nuclear magnetic resonance spectroscopy to investigate membrane protein conformational states, ligand binding, lipid interactions, stability, and folding. This review highlights these advancements and new understandings and provides examples of recent applications.


Subject(s)
Membrane Proteins , Membrane Proteins/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods , Magnetic Resonance Spectroscopy/methods , Protein Conformation
3.
Proc Natl Acad Sci U S A ; 119(43): e2202992119, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36251991

ABSTRACT

N-glycosylation is a common posttranslational modification of secreted proteins in eukaryotes. This modification targets asparagine residues within the consensus sequence, N-X-S/T. While this sequence is required for glycosylation, the initial transfer of a high-mannose glycan by oligosaccharyl transferases A or B (OST-A or OST-B) can lead to incomplete occupancy at a given site. Factors that determine the extent of transfer are not well understood, and understanding them may provide insight into the function of these important enzymes. Here, we use mass spectrometry (MS) to simultaneously measure relative occupancies for three N-glycosylation sites on the N-terminal IgV domain of the recombinant glycoprotein, hCEACAM1. We demonstrate that addition is primarily by the OST-B enzyme and propose a kinetic model of OST-B N-glycosylation. Fitting the kinetic model to the MS data yields distinct rates for glycan addition at most sites and suggests a largely stochastic initial order of glycan addition. The model also suggests that glycosylation at one site influences the efficiency of subsequent modifications at the other sites, and glycosylation at the central or N-terminal site leads to dead-end products that seldom lead to full glycosylation of all three sites. Only one path of progressive glycosylation, one initiated by glycosylation at the C-terminal site, can efficiently lead to full occupancy for all three sites. Thus, the hCEACAM1 domain provides an effective model system to study site-specific recognition of glycosylation sequons by OST-B and suggests that the order and efficiency of posttranslational glycosylation is influenced by steric cross-talk between adjoining acceptor sites.


Subject(s)
Asparagine , Hexosyltransferases , Asparagine/metabolism , Glycoproteins/metabolism , Glycosylation , Hexosyltransferases/genetics , Hexosyltransferases/metabolism , Mannose , Polysaccharides , Transferases/metabolism
4.
J Med Chem ; 63(5): 1882-1891, 2020 03 12.
Article in English | MEDLINE | ID: mdl-31913619

ABSTRACT

The training of new medicinal chemists is vital to the future of the field, and as graduate students at this critical stage, we are uniquely positioned to comment on our training. Herein, we discuss the perspectives from graduate researchers before, during, and after graduate school by utilizing survey data obtained from five medicinal chemistry programs in the Midwest and recent alumni of the University of Minnesota. We also reflect on the female perspective within the field of medicinal chemistry. Finally, we offer recommendations to both students and faculty in the hopes of helping future generations succeed in the field.


Subject(s)
Chemistry, Pharmaceutical/education , Chemistry, Pharmaceutical/trends , Gender Identity , Research Personnel/education , Research Personnel/trends , Universities/trends , Career Choice , Education, Graduate/trends , Humans
5.
J Med Chem ; 62(14): 6824-6830, 2019 07 25.
Article in English | MEDLINE | ID: mdl-31268316

ABSTRACT

TGR5 agonists are potential therapeutics for a variety of conditions including type 2 diabetes, obesity, and inflammatory bowel disease. After screening a library of chenodeoxycholic acid (CDCA) derivatives, it was determined that a range of modifications could be made to the acid moiety of CDCA which significantly increased TGR5 agonist potency. Surprisingly, methylation of the 7-hydroxyl of CDCA led to a further dramatic increase in potency, allowing the identification of 5.6 nM TGR5 agonist 17.


Subject(s)
Chenodeoxycholic Acid/analogs & derivatives , Chenodeoxycholic Acid/pharmacology , Receptors, G-Protein-Coupled/agonists , Cell Line , Cyclic AMP/metabolism , Drug Discovery , Humans , Methylation , Molecular Docking Simulation , Receptors, G-Protein-Coupled/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL