Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Environ Sci Technol ; 58(9): 4226-4236, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38380822

ABSTRACT

Prior studies have shown that people of color (POC) in the United States are exposed to higher levels of pollution than non-Hispanic White people. We show that the city of Denver, Colorado, displays similar race- and ethnicity-based air pollution disparities by using a combination of high-resolution satellite data, air pollution modeling, historical demographic information, and areal apportionment techniques. TROPOMI NO2 columns and modeled PM2.5 concentrations from 2019 are higher in communities subject to redlining. We calculated and compared Spearman coefficients for pollutants and race at the census tract level for every city that underwent redlining to contextualize the disparities in Denver. We find that the location of polluting infrastructure leads to higher populations of POC living near point sources, including 40% higher Hispanic and Latino populations. This influences pollution distribution, with annual average PM2.5 surface concentrations of 6.5 µg m-3 in census tracts with 0-5% Hispanic and Latino populations and 7.5 µg m-3 in census tracts with 60-65% Hispanic and Latino populations. Traffic analysis and emission inventory data show that POC are more likely to live near busy highways. Unequal spatial distribution of pollution sources and POC have allowed for pollution disparities to persist despite attempts by the city to rectify them. Finally, we identify the core causes of the pollution disparities to provide direction for remediation.


Subject(s)
Air Pollutants , Air Pollution , Humans , Air Pollutants/analysis , Air Pollution/analysis , Cities , Environmental Exposure/analysis , Particulate Matter/analysis , United States , Nitrogen Oxides/analysis
2.
PNAS Nexus ; 3(1): pgad483, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38222466

ABSTRACT

The COVID-19 stay-at-home orders issued in the United States caused significant reductions in traffic and economic activities. To understand the pandemic's perturbations on US emissions and impacts on urban air quality, we developed near-real-time bottom-up emission inventories based on publicly available energy and economic datasets, simulated the emission changes in a chemical transport model, and evaluated air quality impacts against various observations. The COVID-19 pandemic affected US emissions across broad-based energy and economic sectors and the impacts persisted to 2021. Compared with 2019 business-as-usual emission scenario, COVID-19 perturbations resulted in annual decreases of 10-15% in emissions of ozone (O3) and fine particle (PM2.5) gas-phase precursors, which are about two to four times larger than long-term annual trends during 2010-2019. While significant COVID-induced reductions in transportation and industrial activities, particularly in April-June 2020, resulted in overall national decreases in air pollutants, meteorological variability across the nation led to local increases or decreases of air pollutants, and mixed air quality changes across the United States between 2019 and 2020. Over a full year (April 2020 to March 2021), COVID-induced emission reductions led to 3-4% decreases in national population-weighted annual fourth maximum of daily maximum 8-h average O3 and annual PM2.5. Assuming these emission reductions could be maintained in the future, the result would be a 4-5% decrease in premature mortality attributable to ambient air pollution, suggesting that continued efforts to mitigate gaseous pollutants from anthropogenic sources can further protect human health from air pollution in the future.

3.
Environ Sci Technol ; 57(49): 20689-20698, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38033264

ABSTRACT

The extent to which emission control technologies and policies have reduced anthropogenic NOx emissions from motor vehicles is large but uncertain. We evaluate a fuel-based emission inventory for southern California during the June 2021 period, coinciding with the Re-Evaluating the Chemistry of Air Pollutants in CAlifornia (RECAP-CA) field campaign. A modified version of the Fuel-based Inventory of Vehicle Emissions (FIVE) is presented, incorporating 1.3 km resolution gridding and a new light-/medium-duty diesel vehicle category. NOx concentrations and weekday-weekend differences were predicted using the WRF-Chem model and evaluated using satellite and aircraft observations. Model performance was similar on weekdays and weekends, indicating appropriate day-of-week scaling of NOx emissions and a reasonable distribution of emissions by sector. Large observed weekend decreases in NOx are mainly due to changes in on-road vehicle emissions. The inventory presented in this study suggests that on-road vehicles were responsible for 55-72% of the NOx emissions in the South Coast Air Basin, compared to the corresponding fraction (43%) in the planning inventory from the South Coast Air Quality Management District. This fuel-based inventory suggests on-road NOx emissions that are 1.5 ± 0.4, 2.8 ± 0.6, and 1.3 ± 0.7 times the reference EMFAC model estimates for on-road gasoline, light- and medium-duty diesel, and heavy-duty diesel, respectively.


Subject(s)
Air Pollutants , Vehicle Emissions , Vehicle Emissions/analysis , Los Angeles , Environmental Monitoring , Air Pollutants/analysis , Gasoline/analysis , Motor Vehicles , Nitrogen Oxides/analysis
4.
Environ Sci Technol ; 57(41): 15533-15545, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37791848

ABSTRACT

Los Angeles is a major hotspot for ozone and particulate matter air pollution in the United States. Ozone and PM2.5 in this region have not improved substantially for the past decade, despite a reduction in vehicular emissions of their precursors, NOx and volatile organic compounds (VOCs). This reduction in "traditional" sources has made the current emission mixture of air pollutant precursors more uncertain. To map and quantify emissions of a wide range of VOCs in this urban area, we performed airborne eddy covariance measurements with wavelet analysis. VOC fluxes measured include tracers for source categories, such as traffic, vegetation, and volatile chemical products (VCPs). Mass fluxes were dominated by oxygenated VOCs, with ethanol contributing ∼29% of the total. In terms of OH reactivity and aerosol formation potential, terpenoids contributed more than half. Observed fluxes were compared with two commonly used emission inventories: the California Air Resources Board inventory and the combination of the Biogenic Emission Inventory System with the Fuel-based Inventory of Vehicle Emissions combined with Volatile Chemical Products (FIVE-VCP). The comparison shows mismatches regarding the amount, spatial distribution, and weekend effects of observed VOC emissions with the inventories. The agreement was best for typical transportation related VOCs, while discrepancies were larger for biogenic and VCP-related VOCs.


Subject(s)
Air Pollutants , Ozone , Volatile Organic Compounds , United States , Volatile Organic Compounds/analysis , Los Angeles , Air Pollutants/analysis , Particulate Matter/analysis , Vehicle Emissions/analysis , Ozone/analysis , Environmental Monitoring , China
5.
Environ Sci Technol ; 57(32): 11891-11902, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37527511

ABSTRACT

Volatile chemical products (VCP) are an increasingly important source of hydrocarbon and oxygenated volatile organic compound (OVOC) emissions to the atmosphere, and these emissions are likely to play an important role as anthropogenic precursors for secondary organic aerosol (SOA). While the SOA from VCP hydrocarbons is often accounted for in models, the formation, evolution, and properties of SOA from VCP OVOCs remain uncertain. We use environmental chamber data and a kinetic model to develop SOA parameters for 10 OVOCs representing glycols, glycol ethers, esters, oxygenated aromatics, and amines. Model simulations suggest that the SOA mass yields for these OVOCs are of the same magnitude as widely studied SOA precursors (e.g., long-chain alkanes, monoterpenes, and single-ring aromatics), and these yields exhibit a linear correlation with the carbon number of the precursor. When combined with emissions inventories for two megacities in the United States (US) and a US-wide inventory, we find that VCP VOCs react with OH to form 0.8-2.5× as much SOA, by mass, as mobile sources. Hydrocarbons (terpenes, branched and cyclic alkanes) and OVOCs (terpenoids, glycols, glycol ethers) make up 60-75 and 25-40% of the SOA arising from VCP use, respectively. This work contributes to the growing body of knowledge focused on studying VCP VOC contributions to urban air pollution.


Subject(s)
Air Pollutants , Volatile Organic Compounds , Air Pollutants/analysis , Hydrocarbons , Volatile Organic Compounds/analysis , Terpenes , Alkanes , Aerosols/analysis , Ethers , China
6.
Plant Dis ; 107(10): 3131-3138, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37227436

ABSTRACT

Microdochium patch is a turfgrass disease caused by the fungal pathogen Microdochium nivale. Iron sulfate heptahydrate (FeSO4•7H2O) and phosphorous acid (H3PO3) applications have previously been shown to suppress Microdochium patch on annual bluegrass putting greens when applied alone, although either disease suppression was inadequate or turfgrass quality was reduced from the applications. A field experiment was conducted in Corvallis, Oregon, U.S.A., to evaluate the combined effects of FeSO4•7H2O and H3PO3 on Microdochium patch suppression and annual bluegrass quality. The results of this work suggest that the addition of 3.7 kg H3PO3 ha-1 with 24 or 49 kg FeSO4•7H2O ha-1 applied every 2 weeks improved the suppression of Microdochium patch without substantially compromising turf quality, which occurred when 98 kg FeSO4•7H2O ha-1 was applied with or without H3PO3. Spray suspensions reduced the pH of the water carrier, therefore two additional growth chamber experiments were conducted to better understand the effects of these treatments on leaf surface pH and Microdochium patch suppression. On the application date in the first growth chamber experiment, at least a 19% leaf surface pH reduction was observed compared with the well water control when FeSO4•7H2O was applied alone. When 3.7 kg H3PO3 ha-1 was combined with FeSO4•7H2O, regardless of the rate, the leaf surface pH was reduced by at least 34%. The second growth chamber experiment determined that sulfuric acid (H2SO4) at a 0.5% spray solution rate was always in the group that produced the lowest annual bluegrass leaf surface pH, but did not suppress Microdochium patch. Together, these results suggest that while treatments decrease leaf surface pH, this decrease in pH is not responsible for the suppression of Microdochium patch.


Subject(s)
Poa , Xylariales , Poa/microbiology , Water , Sulfates , Iron , Hydrogen-Ion Concentration
7.
Environ Sci Technol ; 2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36607321

ABSTRACT

Increasing trends in biomass burning emissions significantly impact air quality in North America. Enhanced mixing ratios of ozone (O3) in urban areas during smoke-impacted periods occur through transport of O3 produced within the smoke or through mixing of pyrogenic volatile organic compounds (PVOCs) with urban nitrogen oxides (NOx = NO + NO2) to enhance local O3 production. Here, we analyze a set of detailed chemical measurements, including carbon monoxide (CO), NOx, and speciated volatile organic compounds (VOCs), to evaluate the effects of smoke transported from relatively local and long-range fires on O3 measured at a site in Boulder, Colorado, during summer 2020. Relative to the smoke-free period, CO, background O3, OH reactivity, and total VOCs increased during both the local and long-range smoke periods, but NOx mixing ratios remained approximately constant. These observations are consistent with transport of PVOCs (comprised primarily of oxygenates) but not NOx with the smoke and with the influence of O3 produced within the smoke upwind of the urban area. Box-model calculations show that local O3 production during all three periods was in the NOx-sensitive regime. Consequently, this locally produced O3 was similar in all three periods and was relatively insensitive to the increase in PVOCs. However, calculated NOx sensitivities show that PVOCs substantially increase O3 production in the transition and NOx-saturated (VOC-sensitive) regimes. These results suggest that (1) O3 produced during smoke transport is the main driver for O3 increases in NOx-sensitive urban areas and (2) smoke may cause an additional increase in local O3 production in NOx-saturated (VOC-sensitive) urban areas. Additional detailed VOC and NOx measurements in smoke impacted urban areas are necessary to broadly quantify the effects of wildfire smoke on urban O3 and develop effective mitigation strategies.

8.
Environ Sci Technol ; 57(5): 1870-1881, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36695819

ABSTRACT

We report aircraft observations of extreme levels of HCl and the dihalogens Cl2, Br2, and BrCl in an industrial plume near the Great Salt Lake, Utah. Complete depletion of O3 was observed concurrently with halogen enhancements as a direct result of photochemically produced halogen radicals. Observed fluxes for Cl2, HCl, and NOx agreed with facility-reported emissions inventories. Bromine emissions are not required to be reported in the inventory, but are estimated as 173 Mg year-1 Br2 and 949 Mg year-1 BrCl, representing a major uncounted oxidant source. A zero-dimensional photochemical box model reproduced the observed O3 depletions and demonstrated that bromine radical cycling was principally responsible for the rapid O3 depletion. Inclusion of observed halogen emissions in both the box model and a 3D chemical model showed significant increases in oxidants and particulate matter (PM2.5) in the populated regions of the Great Salt Lake Basin, where winter PM2.5 is among the most severe air quality issues in the U.S. The model shows regional PM2.5 increases of 10%-25% attributable to this single industrial halogen source, demonstrating the impact of underreported industrial bromine emissions on oxidation sources and air quality within a major urban area of the western U.S.


Subject(s)
Air Pollutants , Air Pollution , Ozone Depletion , Ozone , Air Pollutants/analysis , Halogens , Ozone/analysis , Bromine , Lakes , Air Pollution/analysis , Particulate Matter/analysis , Oxidants
9.
Atmos Chem Phys ; 22(21): 14377-14399, 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36506646

ABSTRACT

Volatile chemical products (VCPs) and other non-combustion-related sources have become important for urban air quality, and bottom-up calculations report emissions of a variety of functionalized compounds that remain understudied and uncertain in emissions estimates. Using a new instrumental configuration, we present online measurements of oxygenated organic compounds in a U.S. megacity over a 10-day wintertime sampling period, when biogenic sources and photochemistry were less active. Measurements were conducted at a rooftop observatory in upper Manhattan, New York City, USA using a Vocus chemical ionization time-of-flight mass spectrometer with ammonium (NH4 +) as the reagent ion operating at 1 Hz. The range of observations spanned volatile, intermediate-volatility, and semi-volatile organic compounds with targeted analyses of ~150 ions whose likely assignments included a range of functionalized compound classes such as glycols, glycol ethers, acetates, acids, alcohols, acrylates, esters, ethanolamines, and ketones that are found in various consumer, commercial, and industrial products. Their concentrations varied as a function of wind direction with enhancements over the highly-populated areas of the Bronx, Manhattan, and parts of New Jersey, and included abundant concentrations of acetates, acrylates, ethylene glycol, and other commonly-used oxygenated compounds. The results provide top-down constraints on wintertime emissions of these oxygenated/functionalized compounds with ratios to common anthropogenic marker compounds, and comparisons of their relative abundances to two regionally-resolved emissions inventories used in urban air quality models.

10.
Environ Sci Technol ; 56(22): 15298-15311, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36224708

ABSTRACT

Urban air pollution disproportionately harms communities of color and low-income communities in the U.S. Intraurban nitrogen dioxide (NO2) inequalities can be observed from space using the TROPOspheric Monitoring Instrument (TROPOMI). Past research has relied on time-averaged measurements, limiting our understanding of how neighborhood-level NO2 inequalities co-vary with urban air quality and climate. Here, we use fine-scale (250 m × 250 m) airborne NO2 remote sensing to demonstrate that daily TROPOMI observations resolve a major portion of census tract-scale NO2 inequalities in the New York City-Newark urbanized area. Spatiotemporally coincident TROPOMI and airborne inequalities are well correlated (r = 0.82-0.97), with slopes of 0.82-1.05 for relative and 0.76-0.96 for absolute inequalities for different groups. We calculate daily TROPOMI NO2 inequalities over May 2018-September 2021, reporting disparities of 25-38% with race, ethnicity, and/or household income. Mean daily inequalities agree with results based on TROPOMI measurements oversampled to 0.01° × 0.01° to within associated uncertainties. Individual and mean daily TROPOMI NO2 inequalities are largely insensitive to pixel size, at least when pixels are smaller than ∼60 km2, but are sensitive to low observational coverage. We statistically analyze daily NO2 inequalities, presenting empirical evidence of the systematic overburdening of communities of color and low-income neighborhoods with polluting sources, regulatory ozone co-benefits, and worsened NO2 inequalities and cumulative NO2 and urban heat burdens with climate change.


Subject(s)
Air Pollutants , Air Pollution , Nitrogen Dioxide/analysis , Air Pollutants/analysis , New York City , New Jersey , Air Pollution/analysis , Environmental Monitoring
11.
Environ Sci Technol ; 56(3): 1885-1893, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35044770

ABSTRACT

There have only been a few wintertime studies of heavy-duty vehicle (HDV) NOx emissions in the United States, and while they have observed increased emissions, fleet characterization to identify the cause has been lacking. We have collected wintertime measurements of NOx emission factors from 1591 HDVs at a Utah Port of Entry in December 2020 that includes individual vehicle identification. In general, NOx emission factors for 2011 and newer chassis model year HDV are significantly higher than those for 2017 spring measurements from California. The newest chassis model year HDV (2017-2021) NOx emission factors are similar, indicating no significant emission deterioration over the 5 year period, though they are still approximately a factor of 3 higher than the portable emission measurement on-road enforcement standard. We estimate that ambient temperature increases NOx emissions no more than 25% in the newer HDV, likely through reductions in catalyst efficiencies. NOx emissions increase to a significantly higher level for the 2011-2013 chassis model year vehicles, where within the uncertainties, they have emissions similar to older precontrol vehicles, indicating that they have lost their NOx control capabilities within 8 years. MOVES3 modeling of the Utah fleet underpredicted mean NOx emissions by a factor of 1.8 but the MOVES3 estimate is helped by including a larger fraction of high-emitting glider kit trucks (new chassis with pre-emission control engines) than found in the observations.


Subject(s)
Air Pollutants , Vehicle Emissions , Air Pollutants/analysis , Environmental Monitoring , Motor Vehicles , Nitric Oxide , Nitrogen Oxides/analysis , Utah , Vehicle Emissions/analysis
12.
Environ Sci Technol ; 56(4): 2172-2180, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35080873

ABSTRACT

We analyze airborne measurements of atmospheric CO concentration from 70 flights conducted over six years (2015-2020) using an inverse model to quantify the CO emissions from the Washington, DC, and Baltimore metropolitan areas. We found that CO emissions have been declining in the area at a rate of ≈-4.5 % a-1 since 2015 or ≈-3.1 % a-1 since 2016. In addition, we found that CO emissions show a "Sunday" effect, with emissions being lower, on average, than for the rest of the week and that the seasonal cycle is no larger than 16 %. Our results also show that the trend derived from the NEI agrees well with the observed trend, but that NEI daytime-adjusted emissions are ≈50 % larger than our estimated emissions. In 2020, measurements collected during the shutdown in activity related to the COVID-19 pandemic indicate a significant drop in CO emissions of 16 % relative to the expected emissions trend from the previous years, or 23 % relative to the mean of 2016 to February 2020. Our results also indicate a larger reduction in April than in May. Last, we show that this reduction in CO emissions was driven mainly by a reduction in traffic.


Subject(s)
Air Pollutants , COVID-19 , Air Pollutants/analysis , Baltimore , Carbon Monoxide , District of Columbia , Environmental Monitoring , Humans , Pandemics , SARS-CoV-2 , Vehicle Emissions/analysis
13.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Article in English | MEDLINE | ID: mdl-34341119

ABSTRACT

Decades of air quality improvements have substantially reduced the motor vehicle emissions of volatile organic compounds (VOCs). Today, volatile chemical products (VCPs) are responsible for half of the petrochemical VOCs emitted in major urban areas. We show that VCP emissions are ubiquitous in US and European cities and scale with population density. We report significant VCP emissions for New York City (NYC), including a monoterpene flux of 14.7 to 24.4 kg ⋅ d-1 ⋅ km-2 from fragranced VCPs and other anthropogenic sources, which is comparable to that of a summertime forest. Photochemical modeling of an extreme heat event, with ozone well in excess of US standards, illustrates the significant impact of VCPs on air quality. In the most populated regions of NYC, ozone was sensitive to anthropogenic VOCs (AVOCs), even in the presence of biogenic sources. Within this VOC-sensitive regime, AVOCs contributed upwards of ∼20 ppb to maximum 8-h average ozone. VCPs accounted for more than 50% of this total AVOC contribution. Emissions from fragranced VCPs, including personal care and cleaning products, account for at least 50% of the ozone attributed to VCPs. We show that model simulations of ozone depend foremost on the magnitude of VCP emissions and that the addition of oxygenated VCP chemistry impacts simulations of key atmospheric oxidation products. NYC is a case study for developed megacities, and the impacts of VCPs on local ozone are likely similar for other major urban regions across North America or Europe.


Subject(s)
Air Pollutants/analysis , Ozone , Volatile Organic Compounds/analysis , Air Pollutants/chemistry , Air Pollution , Cities , Environmental Monitoring/methods , Europe , Humans , Models, Theoretical , Monoterpenes/analysis , New York City , Nitrogen Oxides/analysis , Nitrogen Oxides/chemistry , Odorants/analysis , Population Density , Vehicle Emissions/analysis , Volatile Organic Compounds/chemistry
14.
Environ Sci Technol ; 55(13): 9129-9139, 2021 07 06.
Article in English | MEDLINE | ID: mdl-34161066

ABSTRACT

We present an updated fuel-based oil and gas (FOG) inventory with estimates of nitrogen oxide (NOx) emissions from oil and natural gas production in the contiguous US (CONUS). We compare the FOG inventory with aircraft-derived ("top-down") emissions for NOx over footprints that account for ∼25% of US oil and natural gas production. Across CONUS, we find that the bottom-up FOG inventory combined with other anthropogenic emissions is on average within ∼10% of top-down aircraft-derived NOx emissions. We also find good agreement in the trends of NOx from drilling- and production-phase activities, as inferred by satellites and in the bottom-up inventory. Leveraging tracer-tracer relationships derived from aircraft observations, methane (CH4) and non-methane volatile organic compound (NMVOC) emissions have been added to the inventory. Our total CONUS emission estimates for 2015 of oil and natural gas are 0.45 ± 0.14 Tg NOx/yr, 15.2 ± 3.0 Tg CH4/yr, and 5.7 ± 1.7 Tg NMVOC/yr. Compared to the US National Emissions Inventory and Greenhouse Gas Inventory, FOG NOx emissions are ∼40% lower, while inferred CH4 and NMVOC emissions are up to a factor of ∼2 higher. This suggests that NMVOC/NOx emissions from oil and gas basins are ∼3 times higher than current estimates and will likely affect how air quality models represent ozone formation downwind of oil and gas fields.


Subject(s)
Air Pollutants , Ozone , Air Pollutants/analysis , Methane/analysis , Natural Gas/analysis , Oil and Gas Fields , Ozone/analysis
15.
Environ Sci Technol ; 55(10): 6655-6664, 2021 05 18.
Article in English | MEDLINE | ID: mdl-33951912

ABSTRACT

On-road vehicles continue to be a major source of nitrogen oxide (NOx) emissions in the United States and in other countries around the world. The goal of this study is to compare and evaluate emission inventories and long-term trends in vehicular NOx emissions. Taxable fuel sales data and in-use measurements of emission factors are combined to generate fuel-based NOx emission inventories for California and the US over the period 1990-2020. While gasoline and diesel fuel sales increased over the last three decades, total on-road NOx emissions declined by approximately 70% since 1990, with a steeper rate of decrease after 2004 when heavy-duty diesel NOx emission controls finally started to gain traction. In California, additional steps have been taken to accelerate the introduction of new heavy-duty engines equipped with selective catalytic reduction systems, resulting in a 48% decrease in diesel NOx emissions in California compared to a 32% decrease nationally since 2010. California EMFAC model predictions are in good agreement with fuel-based inventory results for gasoline engines and are higher than fuel-based estimates for diesel engines prior to the mid-2010s. Similar to the findings of recent observational and modeling studies, there are discrepancies between the fuel-based inventory and national MOVES model estimates. MOVES predicts a steeper decrease in NOx emissions and predicts higher NOx emissions from gasoline engines over the entire period from 1990 to 2020.


Subject(s)
Air Pollutants , Gasoline , Air Pollutants/analysis , Environmental Monitoring , Gasoline/analysis , Motor Vehicles , Nitrogen Oxides/analysis , Vehicle Emissions/analysis
16.
Environ Sci Technol ; 55(8): 4332-4343, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33720711

ABSTRACT

Despite decades of declining air pollution, urban U.S. areas are still affected by summertime ozone and wintertime particulate matter exceedance events. Volatile organic compounds (VOCs) are known precursors of secondary organic aerosol (SOA) and photochemically produced ozone. Urban VOC emission sources, including on-road transportation emissions, have decreased significantly over the past few decades through successful regulatory measures. These drastic reductions in VOC emissions have led to a change in the distribution of urban emissions and noncombustion sources of VOCs such as those from volatile chemical products (VCPs), which now account for a higher fraction of the urban VOC burden. Given this shift in emission sources, it is essential to quantify the relative contribution of VCP and mobile source emissions to urban pollution. Herein, ground site and mobile laboratory measurements of VOCs were performed. Two ground site locations with different population densities, Boulder, CO, and New York City (NYC), NY, were chosen in order to evaluate the influence of VCPs in cities with varying mixtures of VCPs and mobile source emissions. Positive matrix factorization was used to attribute hundreds of compounds to mobile- and VCP-dominated sources. VCP-dominated emissions contributed to 42 and 78% of anthropogenic VOC emissions for Boulder and NYC, respectively, while mobile source emissions contributed 58 and 22%. Apportioned VOC emissions were compared to those estimated from the Fuel-based Inventory of Vehicle Emissions and VCPs and agreed to within 25% for the bulk comparison and within 30% for more than half of individual compounds. The evaluated inventory was extended to other U.S. cities and it suggests that 50 to 80% of emissions, reactivity, and the SOA-forming potential of urban anthropogenic VOCs are associated with VCP-dominated sources, demonstrating their important role in urban U.S. air quality.


Subject(s)
Air Pollutants , Ozone , Volatile Organic Compounds , Air Pollutants/analysis , Cities , Environmental Monitoring , New York City , Ozone/analysis , Particulate Matter/analysis , Vehicle Emissions/analysis , Volatile Organic Compounds/analysis
17.
Environ Sci Technol ; 55(1): 188-199, 2021 01 05.
Article in English | MEDLINE | ID: mdl-33325693

ABSTRACT

With traffic emissions of volatile organic compounds (VOCs) decreasing rapidly over the last decades, the contributions of the emissions from other source categories, such as volatile chemical products (VCPs), have become more apparent in urban air. In this work, in situ measurements of various VOCs are reported for New York City, Pittsburgh, Chicago, and Denver. The magnitude of different emission sources relative to traffic is determined by measuring the urban enhancement of individual compounds relative to the enhancement of benzene, a known tracer of fossil fuel in the United States. The enhancement ratios of several VCP compounds to benzene correlate well with population density (R2 ∼ 0.6-0.8). These observations are consistent with the expectation that some human activity should correlate better with the population density than transportation emissions, due to the lower per capita rate of driving in denser cities. Using these data, together with a bottom-up fuel-based inventory of vehicle emissions and volatile chemical products (FIVE-VCP) inventory, we identify tracer compounds for different VCP categories: decamethylcyclopentasiloxane (D5-siloxane) for personal care products, monoterpenes for fragrances, p-dichlorobenzene for insecticides, D4-siloxane for adhesives, para-chlorobenzotrifluoride (PCBTF) for solvent-based coatings, and Texanol for water-based coatings. Furthermore, several other compounds are identified (e.g., ethanol) that correlate with population density and originate from multiple VCP sources. Ethanol and fragrances are among the most abundant and reactive VOCs associated with VCP emissions.


Subject(s)
Air Pollutants , Volatile Organic Compounds , Air Pollutants/analysis , Chicago , Cities , Environmental Monitoring , Humans , New York City , United States , Vehicle Emissions/analysis , Volatile Organic Compounds/analysis
18.
Nat Sustain ; N/A: 1-57, 2020 Oct 05.
Article in English | MEDLINE | ID: mdl-33134558

ABSTRACT

Consumer, industrial, and commercial product usage is a source of exposure to potentially hazardous chemicals. In addition, cleaning agents, personal care products, coatings, and other volatile chemical products (VCPs), evaporate and react in the atmosphere producing secondary pollutants. Here, we show high air emissions from VCP usage (≥ 14 kg person-1 yr-1, at least 1.7× higher than current operational estimates) are supported by multiple estimation methods and constraints imposed by ambient levels of ozone, hydroxyl radical (OH) reactivity, and the organic component of fine particulate matter (PM2.5) in Pasadena, California. A near-field model, which estimates human chemical exposure during or in the vicinity of product use, indicates these high air emissions are consistent with organic product usage up to ~75 kg person-1 yr-1, and inhalation of consumer products could be a non-negligible exposure pathway. After constraining the PM2.5 yield to 5% by mass, VCPs produce ~41% of the photochemical organic PM2.5 (1.1 ± 0.3 µg m-3) and ~17% of maximum daily 8-hr average ozone (9 ± 2 ppb) in summer Los Angeles. Therefore, both toxicity and ambient criteria pollutant formation should be considered when organic substituents are developed for VCPs in pursuit of safer and sustainable products and cleaner air.

19.
Environ Sci Technol ; 54(16): 9882-9895, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32806912

ABSTRACT

Houston, Texas is a major U.S. urban and industrial area where poor air quality is unevenly distributed and a disproportionate share is located in low-income, non-white, and Hispanic neighborhoods. We have traditionally lacked city-wide observations to fully describe these spatial heterogeneities in Houston and in cities globally, especially for reactive gases like nitrogen dioxide (NO2). Here, we analyze novel high-spatial-resolution (250 m × 500 m) NO2 vertical columns measured by the NASA GCAS airborne spectrometer as part of the September-2013 NASA DISCOVER-AQ mission and discuss differences in population-weighted NO2 at the census-tract level. Based on the average of 35 repeated flight circuits, we find 37 ± 6% higher NO2 for non-whites and Hispanics living in low-income tracts (LIN) compared to whites living in high-income tracts (HIW) and report NO2 disparities separately by race ethnicity (11-32%) and poverty status (15-28%). We observe substantial time-of-day and day-to-day variability in LIN-HIW NO2 differences (and in other metrics) driven by the greater prevalence of NOx (≡NO + NO2) emission sources in low-income, non-white, and Hispanic neighborhoods. We evaluate measurements from the recently launched satellite sensor TROPOMI (3.5 km × 7 km at nadir), averaged to 0.01° × 0.01° using physics-based oversampling, and demonstrate that TROPOMI resolves similar relative, but not absolute, tract-level differences compared to GCAS. We utilize the high-resolution FIVE and NEI NOx inventories, plus one year of TROPOMI weekday-weekend variability, to attribute tract-level NO2 disparities to industrial sources and heavy-duty diesel trucking. We show that GCAS and TROPOMI spatial patterns correspond to the surface patterns measured using aircraft profiling and surface monitors. We discuss opportunities for satellite remote sensing to inform decision making in cities generally.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Cities , Environmental Monitoring , Nitrogen Dioxide/analysis , Remote Sensing Technology , Socioeconomic Factors , Texas
20.
Environ Sci Technol ; 54(2): 714-725, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31851821

ABSTRACT

Mobile sampling studies have revealed enhanced levels of secondary organic aerosol (SOA) in source-rich urban environments. While these enhancements can be from rapidly reacting vehicular emissions, it was recently hypothesized that nontraditional emissions (volatile chemical products and upstream emissions) are emerging as important sources of urban SOA. We tested this hypothesis by using gas and aerosol mass spectrometry coupled with an oxidation flow reactor (OFR) to characterize pollution levels and SOA potentials in environments influenced by traditional emissions (vehicular, biogenic), and nontraditional emissions (e.g., paint fumes). We used two SOA models to assess contributions of vehicular and biogenic emissions to our observed SOA. The largest gap between observed and modeled SOA potential occurs in the morning-time urban street canyon environment, for which our model can only explain half of our observation. Contributions from VCP emissions (e.g., personal care products) are highest in this environment, suggesting that VCPs are an important missing source of precursors that would close the gap between modeled and observed SOA potential. Targeted OFR oxidation of nontraditional emissions shows that these emissions have SOA potentials that are similar, if not larger, compared to vehicular emissions. Laboratory experiments reveal large differences in SOA potentials of VCPs, implying the need for further characterization of these nontraditional emissions.


Subject(s)
Air Pollutants , Aerosols , Oxidation-Reduction , Vehicle Emissions
SELECTION OF CITATIONS
SEARCH DETAIL
...