Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Tissue Eng Regen Med ; 16(5): 433-442, 2019 10.
Article in English | MEDLINE | ID: mdl-31624699

ABSTRACT

Background: Advances in tissue engineering and regenerative medicine over the last three decades have made great progress in the development of diagnostic and therapeutic methodologies for damaged tissues. However, regenerative medicine is still not the first line of treatment for patients due to limited understanding of the tissue regeneration process. Therefore, it is prerequisite to develop molecular imaging strategies combined with appropriate contrast agents to validate the therapeutic progress of damaged tissues. Methods: The goal of this review is to discuss the progress in the development of near-infrared (NIR) contrast agents and their biomedical applications for labeling cells and scaffolds, as well as monitoring the treatment progress of native tissue in living organisms. We also discuss the design consideration of NIR contrast agents for tissue engineering and regenerative medicine in terms of their physicochemical and optical properties. Results: The use of NIR imaging system and targeted contrast agents can provide high-resolution and high sensitivity imaging to track/monitor the in vivo fate of administered cells, the degradation rate of implanted scaffolds, and the tissue growth and integration of surrounding cells during the therapeutic period. Conclusion: NIR fluorescence imaging techniques combined with targeted contrast agents can play a significant role in regenerative medicine by monitoring the therapeutic efficacy of implanted cells and scaffolds which would enhance the development of cell therapies and promote their successful clinical translations.


Subject(s)
Optical Imaging/methods , Regenerative Medicine/methods , Humans , Tissue Engineering
2.
J Neurosci ; 38(8): 1942-1958, 2018 02 21.
Article in English | MEDLINE | ID: mdl-29348191

ABSTRACT

Associative learning is crucial for daily function, involving a complex network of brain regions. One region, the nucleus basalis of Meynert (NBM), is a highly interconnected, largely cholinergic structure implicated in multiple aspects of learning. We show that single neurons in the NBM of nonhuman primates (NHPs; n = 2 males; Macaca mulatta) encode learning a new association through spike rate modulation. However, the power of low-frequency local field potential (LFP) oscillations decreases in response to novel, not-yet-learned stimuli but then increase as learning progresses. Both NBM and the dorsolateral prefrontal cortex encode confidence in novel associations by increasing low- and high-frequency LFP power in anticipation of expected rewards. Finally, NBM high-frequency power dynamics are anticorrelated with spike rate modulations. Therefore, novelty, learning, and reward anticipation are separately encoded through differentiable NBM signals. By signaling both the need to learn and confidence in newly acquired associations, NBM may play a key role in coordinating cortical activity throughout the learning process.SIGNIFICANCE STATEMENT Degradation of cells in a key brain region, the nucleus basalis of Meynert (NBM), correlates with Alzheimer's disease and Parkinson's disease progression. To better understand the role of this brain structure in learning and memory, we examined neural activity in the NBM in behaving nonhuman primates while they performed a learning and memory task. We found that single neurons in NBM encoded both salience and an early learning, or cognitive state, whereas populations of neurons in the NBM and prefrontal cortex encode learned state and reward anticipation. The NBM may thus encode multiple stages of learning. These multimodal signals might be leveraged in future studies to develop neural stimulation to facilitate different stages of learning and memory.


Subject(s)
Association Learning/physiology , Basal Nucleus of Meynert/physiology , Reward , Animals , Macaca mulatta , Male , Neurons/physiology
3.
Brain Struct Funct ; 220(5): 2509-17, 2015 Sep.
Article in English | MEDLINE | ID: mdl-24969127

ABSTRACT

Decision making in both animals and humans is influenced by the anticipation of reward and/or punishment. Little is known about how reward and punishment interact in the context of decision making. The Avoidance-Reward Conflict (ARC) Task is a new paradigm that varies the degree of reward and the probability of punishment in a single paradigm that can be used in both non-human primates (NHPs) and humans. This study examined the behavioral pattern in the ARC task in both NHPs and humans. Two adult male NHPs (macaca mulatta) and 20 healthy human volunteers (12 females) participated in the ARC task. NHPs and humans perform similarly on the ARC task. With a high probability of punishment (an aversive air puff to the eye), both NHPs and humans are more likely to forgo reward if it is small or medium magnitude than when it is large. Both NHPs and humans perform similarly on the same behavioral task suggesting the reliability of animal models in predicting human behavior.


Subject(s)
Behavior, Animal/physiology , Behavior/physiology , Decision Making/physiology , Reward , Adult , Animals , Female , Humans , Male , Primates , Punishment/psychology , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL