Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Res Sq ; 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36993358

ABSTRACT

Competitive social interactions, as in chess or poker, often involve multiple moves and countermoves deployed tactically within a broader strategic plan. Such maneuvers are supported by mentalizing or theory-of-mind-reasoning about the beliefs, plans, and goals of an opponent. The neuronal mechanisms underlying strategic competition remain largely unknown. To address this gap, we studied humans and monkeys playing a virtual soccer game featuring continuous competitive interactions. Humans and monkeys deployed similar tactics within broadly identical strategies, which featured unpredictable trajectories and precise timing for kickers, and responsiveness to opponents for goalies. We used Gaussian Process (GP) classification to decompose continuous gameplay into a series of discrete decisions predicated on the evolving states of self and opponent. We extracted relevant model parameters as regressors for neuronal activity in macaque mid-superior temporal sulcus (mSTS), the putative homolog of human temporo-parietal junction (TPJ), an area selectively engaged during strategic social interactions. We discovered two spatially-segregated populations of mSTS neurons that signaled actions of self and opponent, sensitivities to state changes, and previous and current trial outcomes. Inactivating mSTS reduced kicker unpredictability and impaired goalie responsiveness. These findings demonstrate mSTS neurons multiplex information about the current states of self and opponent as well as history of previous interactions to support ongoing strategic competition, consistent with hemodynamic activity found in human TPJ.

2.
Soc Cogn Affect Neurosci ; 15(4): 383-393, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32382757

ABSTRACT

Understanding how humans make competitive decisions in complex environments is a key goal of decision neuroscience. Typical experimental paradigms constrain behavioral complexity (e.g. choices in discrete-play games), and thus, the underlying neural mechanisms of dynamic social interactions remain incompletely understood. Here, we collected fMRI data while humans played a competitive real-time video game against both human and computer opponents, and then, we used Bayesian non-parametric methods to link behavior to neural mechanisms. Two key cognitive processes characterized behavior in our task: (i) the coupling of one's actions to another's actions (i.e. opponent sensitivity) and (ii) the advantageous timing of a given strategic action. We found that the dorsolateral prefrontal cortex displayed selective activation when the subject's actions were highly sensitive to the opponent's actions, whereas activation in the dorsomedial prefrontal cortex increased proportionally to the advantageous timing of actions to defeat one's opponent. Moreover, the temporoparietal junction tracked both of these behavioral quantities as well as opponent social identity, indicating a more general role in monitoring other social agents. These results suggest that brain regions that are frequently implicated in social cognition and value-based decision-making also contribute to the strategic tracking of the value of social actions in dynamic, multi-agent contexts.


Subject(s)
Brain/physiology , Prefrontal Cortex/physiology , Social Behavior , Adult , Bayes Theorem , Decision Making/physiology , Female , Humans , Magnetic Resonance Imaging , Male
3.
Nat Commun ; 10(1): 1808, 2019 04 18.
Article in English | MEDLINE | ID: mdl-31000712

ABSTRACT

Previous studies of strategic social interaction in game theory have predominantly used games with clearly-defined turns and limited choices. Yet, most real-world social behaviors involve dynamic, coevolving decisions by interacting agents, which poses challenges for creating tractable models of behavior. Here, using a game in which humans competed against both real and artificial opponents, we show that it is possible to quantify the instantaneous dynamic coupling between agents. Adopting a reinforcement learning approach, we use Gaussian Processes to model the policy and value functions of participants as a function of both game state and opponent identity. We found that higher-scoring participants timed their final change in direction to moments when the opponent's counter-strategy was weaker, while lower-scoring participants less precisely timed their final moves. This approach offers a natural set of metrics for facilitating analysis at multiple timescales and suggests new classes of experimental paradigms for assessing behavior.


Subject(s)
Choice Behavior , Game Theory , Models, Psychological , Social Behavior , Adult , Bayes Theorem , Behavior Observation Techniques/methods , Female , Healthy Volunteers , Humans , Male , Middle Aged , Normal Distribution , Reinforcement, Psychology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...