Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Article in English | MEDLINE | ID: mdl-39008066

ABSTRACT

The aim of this guideline is to provide recommendations for the implementation of an effective and efficient quality control (QC) programme for SPECT and PET systems in a preclinical imaging lab. These recommendations aim to strengthen the translational power of preclinical imaging results obtained using preclinical SPECT and PET. As for clinical imaging, reliability, reproducibility, and repeatability are essential when groups of animals are used in a longitudinal imaging experiment. The larger the variability of the imaging endpoint, the more animals are needed to be able to observe statistically significant differences between groups. Therefore, preclinical imaging requires quality control procedures to maintain reliability, reproducibility, and repeatability of imaging procedures, and to ensure the accuracy and precision of SPECT and PET quantification. While the Physics Committee of the European Association of Nuclear Medicine (EANM) has already published excellent procedure guidelines for Routine Quality Control Recommendations for Nuclear Medicine Instrumentation that also includes procedures for small animal PET systems, and important steps have already been made concerning preclinical quality control aspects, this new guideline provides a review and update of these previous guidelines such that guidelines are also adapted to new technological developments.

2.
Mol Imaging Biol ; 25(3): 560-568, 2023 06.
Article in English | MEDLINE | ID: mdl-36482032

ABSTRACT

PURPOSE: To support acquisition of accurate, reproducible and high-quality preclinical imaging data, various standardisation resources have been developed over the years. However, it is unclear the impact of those efforts in current preclinical imaging practices. To better understand the status quo in the field of preclinical imaging standardisation, the STANDARD group of the European Society of Molecular Imaging (ESMI) put together a community survey and a forum for discussion at the European Molecular Imaging Meeting (EMIM) 2022. This paper reports on the results from the STANDARD survey and the forum discussions that took place at EMIM2022. PROCEDURES: The survey was delivered to the community by the ESMI office and was promoted through the Society channels, email lists and webpages. The survey contained seven sections organised as generic questions and imaging modality-specific questions. The generic questions focused on issues regarding data acquisition, data processing, data storage, publishing and community awareness of international guidelines for animal research. Specific questions on practices in optical imaging, PET, CT, SPECT, MRI and ultrasound were further included. RESULTS: Data from the STANDARD survey showed that 47% of survey participants do not have or do not know if they have QC/QA guidelines at their institutes. Additionally, a large variability exists in the ways data are acquired, processed and reported regarding general aspects as well as modality-specific aspects. Moreover, there is limited awareness of the existence of international guidelines on preclinical (imaging) research practices. CONCLUSIONS: Standardisation of preclinical imaging techniques remains a challenge and hinders the transformative potential of preclinical imaging to augment biomedical research pipelines by serving as an easy vehicle for translation of research findings to the clinic. Data collected in this project show that there is a need to promote and disseminate already available tools to standardise preclinical imaging practices.


Subject(s)
Biomedical Research , Animals , Surveys and Questionnaires , Reference Standards , Magnetic Resonance Imaging , Ultrasonography
4.
EJNMMI Phys ; 9(1): 77, 2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36315337

ABSTRACT

The fundamental principle of experimental design is to ensure efficiency and efficacy of the performed experiments. Therefore, it behoves the researcher to gain knowledge of the technological equipment to be used. This should include an understanding of the instrument quality control and assurance requirements to avoid inadequate or spurious results due to instrumentation bias whilst improving reproducibility. Here, the important role of preclinical positron emission tomography/computed tomography and the scanner's required quality control and assurance is presented along with the suggested guidelines for quality control and assurance. There are a multitude of factors impeding the continuity and reproducibility of preclinical research data within a single laboratory as well as across laboratories. A more robust experimental design incorporating validation or accreditation of the scanner performance can reduce inconsistencies. Moreover, the well-being and welfare of the laboratory animals being imaged is prime justification for refining experimental designs to include verification of instrumentation quality control and assurance. Suboptimal scanner performance is not consistent with the 3R principle (Replacement, Reduction, and Refinement) and potentially subjects animals to unnecessary harm. Thus, quality assurance and control should be of paramount interest to any scientist conducting animal studies. For this reason, through this work, we intend to raise the awareness of researchers using PET/CT regarding quality control/quality assurance (QC/QA) guidelines and instil the importance of confirming that these are routinely followed. We introduce a basic understanding of the PET/CT scanner, present the purpose of QC/QA as well as provide evidence of imaging data biases caused by lack of QC/QA. This is shown through a review of the literature, QC/QA accepted standard protocols and our research. We also want to encourage researchers to have discussions with the PET/CT facilities manager and/or technicians to develop the optimal designed PET/CT experiment for obtaining their scientific objective. Additionally, this work provides an easy gateway to multiple resources not only for PET/CT knowledge but for guidelines and assistance in preclinical experimental design to enhance scientific integrity of the data and ensure animal welfare.

5.
Front Med (Lausanne) ; 8: 725548, 2021.
Article in English | MEDLINE | ID: mdl-34708053

ABSTRACT

Decades of research have confirmed the beneficial and advantageous use of zebrafish (Danio rerio) as a model of human disease in biomedical studies. Not only are 71% of human genes shared with the zebrafish many of these genes are linked to human diseases. Currently, numerous transgenic and mutant genetic zebrafish lines are now widely available for use in research. Furthermore, zebrafish are relatively inexpensive to maintain compared to rodents. However, a limiting factor to fully utilising adult zebrafish in research is not the fish but the technological imaging tools available. In order to increase the utilisation of adult zebrafish, which are not naturally transparent, requires new imaging approaches. Therefore, this feasibility study: (1) presents an innovative designed PET/CT adult zebrafish imaging platform, capable of maintaining normal aquatic physiology during scanning; (2) assesses the practical aspects of adult zebrafish imaging; and (3) set basic procedural guidelines for zebrafish imaging during a PET/CT acquisition. Methods: With computer aided design (CAD) software an imaging platform was developed for 3D printing. A 3D printed zebrafish model was created from a CT acquisition of a zebrafish using the CAD software. This model and subsequently euthanised zebrafish were imaged post-injection using different concentrations of the radiotracer [18F]FDG with CT contrast. Results: PET/CT imaging was successful, revealing levels as low as 0.01 MBq could be detected in the fish. In the zebrafish imaging post-injection distribution of the radiotracer was observed away from the injection site as well as tissue uptake. Potential preliminary husbandry and welfare guidelines for the fish during and after PET/CT imaging were determined. Conclusion: Using PET/CT for adult zebrafish imaging as a viable non-invasive technological tool is feasible. Adult zebrafish PET/CT imaging has the potential to be a key imaging technique offering the possibilities of enhanced biomedical understanding and new translational data sets.

7.
Nat Commun ; 11(1): 3097, 2020 06 18.
Article in English | MEDLINE | ID: mdl-32555194

ABSTRACT

Bone marrow adipose tissue (BMAT) comprises >10% of total adipose mass, yet unlike white or brown adipose tissues (WAT or BAT) its metabolic functions remain unclear. Herein, we address this critical gap in knowledge. Our transcriptomic analyses revealed that BMAT is distinct from WAT and BAT, with altered glucose metabolism and decreased insulin responsiveness. We therefore tested these functions in mice and humans using positron emission tomography-computed tomography (PET/CT) with 18F-fluorodeoxyglucose. This revealed that BMAT resists insulin- and cold-stimulated glucose uptake, while further in vivo studies showed that, compared to WAT, BMAT resists insulin-stimulated Akt phosphorylation. Thus, BMAT is functionally distinct from WAT and BAT. However, in humans basal glucose uptake in BMAT is greater than in axial bones or subcutaneous WAT and can be greater than that in skeletal muscle, underscoring the potential of BMAT to influence systemic glucose homeostasis. These PET/CT studies characterise BMAT function in vivo, establish new methods for BMAT analysis, and identify BMAT as a distinct, major adipose tissue subtype.


Subject(s)
Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Bone Marrow/metabolism , Glucose/metabolism , Animals , Blotting, Western , Female , Homeostasis/physiology , Humans , Male , Mice , Mice, Inbred C57BL , Positron-Emission Tomography , Rats , Skeleton/metabolism
8.
J Nucl Med ; 61(3): 461-468, 2020 03.
Article in English | MEDLINE | ID: mdl-31562220

ABSTRACT

Preclinical PET/CT is a well-established noninvasive imaging tool for studying disease development/progression and the development of novel radiotracers and pharmaceuticals for clinical applications. Despite this pivotal role, standardization of preclinical PET/CT protocols, including CT absorbed dose guidelines, is essentially nonexistent. This study (1) quantitatively assesses the variability of current preclinical PET/CT acquisition and reconstruction protocols routinely used across multiple centers and scanners; and (2) proposes acquisition and reconstruction PET/CT protocols for standardization of multicenter data, optimized for routine scanning in the preclinical PET/CT laboratory. Methods: Five different commercial preclinical PET/CT scanners in Europe and the United States were enrolled. Seven different PET/CT phantoms were used for evaluating biases on default/general scanner protocols, followed by developing standardized protocols. PET, CT, and absorbed dose biases were assessed. Results: Site default CT protocols were the following: greatest extracted Hounsfield units (HU) were 133 HU for water and -967 HU for air; significant differences in all tissue equivalent material (TEM) groups were measured. The average CT absorbed doses for mouse and rat were 72 mGy and 40 mGy, respectively. Standardized CT protocol were the following: greatest extracted HU were -77 HU for water and -990 HU for air; TEM precision improved with a reduction in variability for each tissue group. The average CT absorbed dose for mouse and rat decreased to 37 mGy and 24 mGy, respectively. Site default PET protocols were the following: uniformity was substandard in one scanner, recovery coefficients (RCs) were either over- or underestimated (maximum of 43%), standard uptake values (SUVs) were biased by a maximum of 44%. Standardized PET protocols were the following: scanner with substandard uniformity improved by 36%, RC variability decreased by 13% points, and SUV accuracy improved to 10%. Conclusion: Data revealed important quantitative biases in preclinical PET/CT and absorbed doses with default protocols. Standardized protocols showed improvements in measured PET/CT accuracy and precision with reduced CT absorbed dose across sites. Adhering to standardized protocols generates reproducible and consistent preclinical imaging datasets, thus augmenting translation of research findings to the clinic.


Subject(s)
Positron Emission Tomography Computed Tomography/standards , Animals , Image Processing, Computer-Assisted , Mice , Phantoms, Imaging , Quality Control , Radiation Dosage , Rats , Reference Standards , Reproducibility of Results , Sensitivity and Specificity
9.
Med Phys ; 46(12): 5593-5601, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31536643

ABSTRACT

PURPOSE: Currently, single-photon emission computed tomography (SPECT)/computed tomography (CT) lung phantoms are commonly constructed using polystyrene beads and interstitial radioactive water. However, this approach often results in a phantom with a density (typically -640 HU) that is considerably higher than that of healthy lung (-750 to -850 HU) or diseased lung (-900 to -950 HU). Furthermore, the polystyrene and water phantoms are often quite heterogeneous in both density and activity concentration, especially when reused. This work is devoted to examining methods for creating a more realistic lung phantom for quantitative SPECT/CT using 99m Tc-laced expanding polyurethane foam (EPF). METHODS: Numerous aspects of EPF utilization were studied, including stoichiometric mixing to control final foam density and the effect of water during growth. We also tested several ways of molding the foam lung phantoms. The most successful method utilized a three-part silicone mold that allowed for creation of a two-lobe phantom, with a different density and activity concentration in each lobe. RESULTS: The final phantom design allows for a more anatomically accurate geometry as well as customizable density and activity concentration in the different lobes of the lung. We demonstrated final lung phantom densities between -760 and -690 HU in the "healthy" phantom and -930 to -890 HU in the "unhealthy" phantom tissue. On average, we achieved 15% activity concentration nonuniformity and 12% density nonuniformity within a given lobe. CONCLUSIONS: Final EPF lung phantoms closely matched the densities of both health and diseased lung tissue and had sufficient uniformities in both density and activity concentration for most nuclear medicine applications. Management of component moisture content is critical for phantom reproducibility.


Subject(s)
Lung/diagnostic imaging , Phantoms, Imaging , Polyurethanes , Single Photon Emission Computed Tomography Computed Tomography/instrumentation , Reproducibility of Results , Water
10.
EJNMMI Phys ; 3(1): 14, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27473290

ABSTRACT

BACKGROUND: The purpose of this study was twofold: to evaluate the quantitative stability of a SPECT/CT gamma camera over time and to determine if daily flood acquisitions can reliably serve as calibration factors for quantitative SPECT. Using a cylindrical water phantom filled with measured amounts of (99m)Tc, factors were calculated to convert counts/cc to activity/cps. Measurements were made over an 18-month period. System sensitivity data calculated from (57)Co daily quality assurance (DQA) flood acquisitions were then compared to the (99m)Tc calibration factors to determine the relationship of the factors. RESULTS: The coefficient of variation is 2.7 % for the (99m)Tc cylinder conversion factors and 2.6 % for the (57)Co DQA flood data. The greatest difference between the cylinder conversion factors and the flood data is less than 3 %. CONCLUSIONS: Based on the results, the camera was stable within 3 % over an 18-month time period. The daily flood source acquisitions can be a reliable source for tracking camera stability and may provide information on updating the calibration factor for quantitative imaging.

11.
Tomography ; 2(4): 353-360, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28066807

ABSTRACT

Quantitative PET imaging is an important tool for clinical trials evaluating the response of cancers to investigational therapies. The standardized uptake value, used as a quantitative imaging biomarker, is dependent on multiple parameters that may contribute bias and variability. The use of long-lived, sealed PET calibration phantoms offers the advantages of known radioactivity activity concentration and simpler use than aqueous phantoms. We evaluated scanner and dose calibrator sources from two batches of commercially available kits, together at a single site and distributed across a local multicenter PET imaging network. We found that radioactivity concentration was uniform within the phantoms. Within the regions of interest drawn in the phantom images, coefficients of variation of voxel values were less than 2%. Across phantoms, coefficients of variation for mean signal were close to 1%. Biases of the standardized uptake value estimated with the kits varied by site and were seen to change in time by approximately ±5%. We conclude that these biases cannot be assumed constant over time. The kits provide a robust method to monitor PET scanner and dose calibrator biases, and resulting biases in standardized uptake values.

12.
EJNMMI Phys ; 2(1): 32, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26572784

ABSTRACT

BACKGROUND: A feasibility study was done to assess the capability of digital silicon photomultipliers to measure the Cherenkov luminescence emitted by a ß source. Cherenkov luminescence imaging (CLI) is possible with a charge coupled device (CCD) based technology, but a stand-alone technique for quantitative activity measurements based on Cherenkov luminescence has not yet been developed. Silicon photomultipliers (SiPMs) are photon counting devices with a fast impulse response and can potentially be used to quantify ß-emitting radiotracer distributions by CLI. METHODS: In this study, a Philips digital photon counting (PDPC) silicon photomultiplier detector was evaluated for measuring Cherenkov luminescence. The PDPC detector is a matrix of avalanche photodiodes, which were read one at a time in a dark count map (DCM) measurement mode (much like a CCD). This reduces the device active area but allows the information from a single avalanche photodiode to be preserved, which is not possible with analog SiPMs. An algorithm to reject the noisiest photodiodes and to correct the measured count rate for the dark current was developed. RESULTS: The results show that, in DCM mode and at (10-13) °C, the PDPC has a dynamic response to different levels of Cherenkov luminescence emitted by a ß source and transmitted through an opaque medium. This suggests the potential for this approach to provide quantitative activity measurements. Interestingly, the potential use of the PDPC in DCM mode for direct imaging of Cherenkov luminescence, as a opposed to a scalar measurement device, was also apparent. CONCLUSIONS: We showed that a PDPC tile in DCM mode is able to detect and image a ß source through its Cherenkov radiation emission. The detector's dynamic response to different levels of radiation suggests its potential quantitative capabilities, and the DCM mode allows imaging with a better spatial resolution than the conventional event-triggered mode. Finally, the same acquisition procedure and data processing could be employed also for other low light levels applications, such as bioluminescence.

13.
IEEE Trans Nucl Sci ; 62(1): 27-35, 2015 Feb 06.
Article in English | MEDLINE | ID: mdl-25914421

ABSTRACT

We have previously reported on dMiCE, a method of resolving depth or interaction (DOI) in a pair of discrete crystals by encoding light sharing properties as a function of depth in the interface of a crystal-element pair. A challenge for this method is the cost and repeatability of interface treatment for each crystal pair. In this work, we report our preliminary results on using sub-surface laser engraving (SSLE) as a means of forming this depth-dependent interface in a dMiCE detector. A surplus first-generation SSLE system was used to create a partially reflective layer 100-microns thick at the boundary between two halves of a 1.4-by-2.9-by-20 mm3 LYSO crystal. The boundary of these paired crystal elements was positioned between two 3-mm wide Silicon photomultiplier arrays. The responses of these two photodetectors were acquired for an ensemble of 511-keV photons collimated to interact at a fixed depth in just one crystal element. Interaction position was then varied to measure detector response as a function of depth, which was then used to maximum-likelihood positions. Despite use of sub-optimal SSLE processing we found an average DOI resolution of 3.4 mm for front-sided readout and 3.9 mm for back-sided readout while obtaining energy resolutions on the order of 10%. We expect DOI resolution can be improved significantly by optimizing the SSLE process and pattern.

14.
Phys Med Biol ; 58(11): 3581-98, 2013 Jun 07.
Article in English | MEDLINE | ID: mdl-23640136

ABSTRACT

We have developed a Monte-Carlo photon-tracking and readout simulator called SCOUT to study the stochastic behavior of signals output from a simplified rectangular scintillation-camera design. SCOUT models the salient processes affecting signal generation, transport, and readout of a scintillation camera. In this work, we compare output signal statistics from SCOUT to experimental results for both a discrete and a monolithic camera. We also benchmark the speed of this simulation tool and compare it to existing simulation tools. We find this modeling tool to be relatively fast and predictive of experimental results. Depending on the modeled camera geometry, we found SCOUT to be 4 to 140 times faster than other modeling tools.


Subject(s)
Monte Carlo Method , Scintillation Counting/methods , Benchmarking , Photons , Reproducibility of Results , Stochastic Processes , Time Factors
15.
Article in English | MEDLINE | ID: mdl-25506194

ABSTRACT

We have previously reported on dMiCE, a method of resolving depth or interaction (DOI) in a pair of discrete crystals by encoding light sharing properties as a function of depth in the interface of this crystal-element pair. A challenge for this method is the cost and repeatability of interface treatment for a crystal pair. In this work, we report our preliminary results on using sub-surface laser engraving (SSLE) as a means of forming this depth-dependent interface in a dMiCE detector. A surplus first-generation SSLE system was used to create a partially reflective layer 100-microns thick at the boundary between two halves of a 1.4-by-2.9-by-20 mmˆ3 LYSO crystal. The boundary of these paired crystal elements was positioned between two 3-mm wide Geiger-Müller avalanche photodiodes from Hamamatsu. The responses of these two photodetectors were acquired for an ensemble of 511-keV photons collimated to interact at a fixed depth in just one crystal element. Interaction position was then varied to measure detector response as a function of depth, which was then used to maximum-likelihood positions events. Despite use of sub-optimal SSLE processing we found an average DOI resolution of 3.4 mm for front-sided readout and 3.9 mm for back-sided readout. We expect DOI resolution can be improved significantly by optimizing the SSLE process and pattern.

16.
J Nucl Med ; 52(2): 218-24, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21233174

ABSTRACT

UNLABELLED: The purpose of this study was to measure the errors introduced by regular calibration of PET/CT scanners and to minimize the effect of calibration error on standardized uptake value measurements. METHODS: Global calibration factors from 2 PET/CT scanners were recorded for 3.5 and 1.8 y, comparing manufacturer-recommended protocols with modified protocols to evaluate error contributions due to operator-influenced procedures. Dose calibrator measurements were evaluated using National Institute of Standards and Technology-traceable sources. RESULTS: Dose calibrator variability was less than 1%, although there was a consistent bias. Global scaling variability was reduced from 6% to 4% for scanner 1 and from 11% to 4% for scanner 2 when quality assurance and quality control procedures were applied to the calibration protocol. When calibrations were done using a (68)Ge/(68)Ga phantom, the variability for both scanners was reduced to approximately 3%. CONCLUSION: Applying quality assurance and quality control procedures to scanner calibration reduces variability, but there is a still a residual longitudinal scanner variability of 3%-4%. The procedures proposed here reduce the impact of operator error on scanner calibration and thereby minimize longitudinal variability in standardized uptake value measurements.


Subject(s)
Positron-Emission Tomography/standards , Tomography, Emission-Computed/standards , Algorithms , Calibration , Cesium Radioisotopes/standards , Fluorine Radioisotopes/standards , Gallium Radioisotopes/standards , Germanium/standards , Image Processing, Computer-Assisted , Phantoms, Imaging , Radioisotopes/standards , Radiopharmaceuticals/pharmacokinetics , Reference Standards , Reproducibility of Results
17.
IEEE Trans Nucl Sci ; : 3650-3653, 2011.
Article in English | MEDLINE | ID: mdl-23202544

ABSTRACT

Availability of compact high-gain, low-noise Silicon Photomultipliers (SiPM) prompts us to examine readout sensors on the entrance surface (SES) as compared to the conventional single-ended readout with sensors on the opposing surface. We measured detector response statistics versus 3D position for these configurations using an 8×8 SiPM array on a 15-mm-thick by 32-mm-wide LYSO block. We calibrate an independently distributed multivariate-normal likelihood model and use it to generate maximum-likelihood estimates of 3D interaction position. Spatial resolution improved 14% and timing resolution improved 10% for the SES device. Bias was unaffected. Photodetection efficiency of our prototype SiPM may have limited further improvement in positioning and timing performance. In future work, we will look to utilize SiPM arrays with enhanced photodetection efficiency.

18.
IEEE Trans Nucl Sci ; 58(5)2011 Oct.
Article in English | MEDLINE | ID: mdl-24347676

ABSTRACT

Continuous miniature crystal element (cMiCE) detectors are a potentially lower cost alternative for high resolution discrete crystal PET detector designs. We report on performance characteristics of a prototype PET scanner consisting of two cMiCE detector modules. Each cMiCE detector is comprised of a 50 × 50 × 8 mm3 LYSO crystal coupled to a 64 channel multi-anode PMT. The cMiCE detectors use a statistics-based positioning method based upon maximum likelihood estimation for event positioning. By this method, cMiCE detectors can also provide some depth of interaction event positioning information. For the prototype scanner, the cMiCE detectors were positioned across from one another on a horizontal gantry with a detector spacing of 10.7 cm. Full tomographic data were collected and reconstructed using single slice rebinning and filtered back projection with no smoothing. The average image resolutions in X (radial), Y (transverse) and Z (axial) were 1.05 ± 0.08 mm, 0.99 ± 0.07 mm, 1.24 ± 0.31 mm FWHM. These initial imaging results from a prototype imaging system demonstrate the outstanding image resolution performance that can be achieved using the potentially lower cost cMiCE detectors.

19.
Article in English | MEDLINE | ID: mdl-22072297

ABSTRACT

We have developed a Monte-Carlo photon-tracking and readout simulator called SCOUT to study the stochastic behavior of signals output from a simplified rectangular scintillation-camera design. SCOUT models the salient processes affecting signal generation, transport, and readout. Presently, we compare output signal statistics from SCOUT to experimental results for both a discrete and a monolithic camera. We also benchmark the speed of this simulation tool and compare it to existing simulation tools. We find this modeling tool to be relatively fast and predictive of experimental results. Depending on the modeled camera geometry, we found SCOUT to be 4 to 140 times faster than other modeling tools.

20.
FPGA ; 2009(7): 93-102, 2009 Feb 22.
Article in English | MEDLINE | ID: mdl-21961085

ABSTRACT

Modern Field Programmable Gate Arrays (FPGAs) are capable of performing complex discrete signal processing algorithms with clock rates above 100MHz. This combined with FPGA's low expense, ease of use, and selected dedicated hardware make them an ideal technology for a data acquisition system for positron emission tomography (PET) scanners. Our laboratory is producing a high-resolution, small-animal PET scanner that utilizes FPGAs as the core of the front-end electronics. For this next generation scanner, functions that are typically performed in dedicated circuits, or offline, are being migrated to the FPGA. This will not only simplify the electronics, but the features of modern FPGAs can be utilizes to add significant signal processing power to produce higher resolution images. In this paper two such processes, sub-clock rate pulse timing and event localization, will be discussed in detail. We show that timing performed in the FPGA can achieve a resolution that is suitable for small-animal scanners, and will outperform the analog version given a low enough sampling period for the ADC. We will also show that the position of events in the scanner can be determined in real time using a statistical positioning based algorithm.

SELECTION OF CITATIONS
SEARCH DETAIL