Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Magn Reson Med ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38650351

ABSTRACT

PURPOSE: Widening the availability of fetal MRI with fully automatic real-time planning of radiological brain planes on 0.55T MRI. METHODS: Deep learning-based detection of key brain landmarks on a whole-uterus echo planar imaging scan enables the subsequent fully automatic planning of the radiological single-shot Turbo Spin Echo acquisitions. The landmark detection pipeline was trained on over 120 datasets from varying field strength, echo times, and resolutions and quantitatively evaluated. The entire automatic planning solution was tested prospectively in nine fetal subjects between 20 and 37 weeks. A comprehensive evaluation of all steps, the distance between manual and automatic landmarks, the planning quality, and the resulting image quality was conducted. RESULTS: Prospective automatic planning was performed in real-time without latency in all subjects. The landmark detection accuracy was 4.2 ± $$ \pm $$ 2.6 mm for the fetal eyes and 6.5 ± $$ \pm $$ 3.2 for the cerebellum, planning quality was 2.4/3 (compared to 2.6/3 for manual planning) and diagnostic image quality was 2.2 compared to 2.1 for manual planning. CONCLUSIONS: Real-time automatic planning of all three key fetal brain planes was successfully achieved and will pave the way toward simplifying the acquisition of fetal MRI thereby widening the availability of this modality in nonspecialist centers.

2.
Eur Radiol ; 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38326448

ABSTRACT

OBJECTIVES: To evaluate the diagnostic performance and reliability of MRI descriptors used for the detection of Ménière's disease (MD) on delayed post-gadolinium MRI. To determine which combination of descriptors should be optimally applied and whether analysis of the vestibular aqueduct (VA) contributes to the diagnosis. MATERIALS AND METHODS: This retrospective single centre case-control study evaluated delayed post-gadolinium MRI of patients with Ménièriform symptoms examined consecutively between Dec 2017 and March 2023. Two observers evaluated 17 MRI descriptors of MD and quantified perilymphatic enhancement (PLE) in the cochlea. Definite MD ears according to the 2015 Barany Society criteria were compared to control ears. Cohen's kappa and diagnostic odds ratio (DORs) were calculated for each descriptor. Forward stepwise logistic regression determined which combination of MRI descriptors would best predict MD ears, and the area under the receiver operating characteristic curve for this model was measured. RESULTS: A total of 227 patients (mean age 48.3 ± 14.6, 99 men) with 96 definite MD and 78 control ears were evaluated. The presence of saccular abnormality (absent, as large as or confluent with the utricle) performed best with a DOR of 292.6 (95% confidence interval (CI), 38.305-2235.058). All VA descriptors demonstrated excellent reliability and with DORs of 7.761 (95% CI, 3.517-17.125) to 18.1 (95% CI, 8.445-39.170). Combining these saccular abnormalities with asymmetric cochlear PLE and an incompletely visualised VA correctly classified 90.2% of cases (sensitivity 84.4%, specificity 97.4%, AUC 0.938). CONCLUSION: Either absent, enlarged or confluent saccules are the best predictors of MD. Incomplete visualisation of the VA adds value to the diagnosis. CLINICAL RELEVANCE STATEMENT: A number of different MRI descriptors have been proposed for the diagnosis of Ménière's disease, but by establishing the optimally performing MRI features and highlighting new useful descriptors, there is an opportunity to improve the diagnostic performance of Ménière's disease imaging. KEY POINTS: • A comprehensive range of existing and novel vestibular aqueduct delayed post-gadolinium MRI descriptors were compared for their diagnostic performance in Ménière's disease. • Saccular abnormality (absent, confluent with or larger than the utricle) is a reliable descriptor and is the optimal individual MRI predictor of Ménière's disease. • The presence of this saccule descriptor or asymmetric perilymphatic enhancement and incomplete vestibular aqueduct visualisation will optimise the MRI diagnosis of Ménière's disease.

4.
Eur J Radiol ; 151: 110286, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35452953

ABSTRACT

PURPOSE: Simultaneous multi-slice (SMS) balanced steady-state free precession (bSSFP) acquisition and iterative reconstruction can provide high spatial resolution and coverage for cardiac magnetic resonance (CMR) perfusion. However, respiratory motion remains a challenge for iterative reconstruction techniques employing temporal regularisation. The aim of this study is to evaluate an iterative reconstruction with integrated motion compensation for SMS-bSSFP first-pass myocardial stress perfusion in the presence of respiratory motion. METHODS: Thirty-one patients with suspected coronary artery disease were prospectively recruited and imaged at 1.5 T. A SMS-bSSFP prototype myocardial perfusion sequence was acquired at stress in all patients. All datasets were reconstructed using an iterative reconstruction with temporal regularisation, once with and once without motion compensation (MC and NMC, respectively). Three readers scored each dataset in terms of: image quality (1:poor; 4:excellent), motion/blurring (1:severe motion/blurring; 3:no motion/blurring), and diagnostic confidence (1:poor confidence; 3:high confidence). Quantitative assessment of sharpness was performed. The number of uncorrupted first-pass dynamics was measured on the NMC datasets to classify patients into 'suboptimal breath-hold (BH)' and 'good BH' groups. RESULTS: Compared across all cases, MC performed better than NMC in terms of image quality (3.5 ± 0.5 vs. 3.0 ± 0.8, P = 0.002), motion/blurring (2.9 ± 0.1 vs. 2.2 ± 0.8, P < 0.001), diagnostic confidence (2.9 ± 0.1 vs. 2.3 ± 0.7, P < 0.001) and sharpness index (0.34 ± 0.05 vs. 0.31 ± 0.06, P < 0.001). Fourteen patients with a suboptimal BH were identified. For the suboptimal BH group, MC performed better than NMC in terms of image quality (3.8 ± 0.4 vs. 2.6 ± 0.8, P < 0.001), motion/blurring (3.0 ± 0.1 vs. 1.6 ± 0.7, P < 0.001), diagnostic confidence (3.0 ± 0.1 vs. 1.9 ± 0.7, P < 0.001) and sharpness index (0.34 ± 0.05 vs. 0.30 ± 0.06, P = 0.004). For the good BH group, sharpness index was higher for MC than NMC (0.34 ± 0.06 vs 0.31 ± 0.07, P = 0.03), while there were no significant differences observed for the other three metrics assessed (P > 0.11). There were no significant differences between suboptimal BH MC and good BH MC for any of the reported metrics (P > 0.06). CONCLUSIONS: Integrated motion compensation significantly reduces motion/blurring and improves image quality, diagnostic confidence and sharpness index of SMS-bSSFP perfusion with iterative reconstruction in the presence of motion.


Subject(s)
Breath Holding , Magnetic Resonance Imaging , Heart , Humans , Magnetic Resonance Imaging/methods , Motion , Perfusion
5.
Magn Reson Med ; 88(2): 663-675, 2022 08.
Article in English | MEDLINE | ID: mdl-35344593

ABSTRACT

PURPOSE: To implement and evaluate a simultaneous multi-slice balanced SSFP (SMS-bSSFP) perfusion sequence and compressed sensing reconstruction for cardiac MR perfusion imaging with full left ventricular (LV) coverage (nine slices/heartbeat) and high spatial resolution (1.4 × 1.4 mm2 ) at 1.5T. METHODS: A preliminary study was performed to evaluate the performance of blipped controlled aliasing in parallel imaging (CAIPI) and RF-CAIPI with gradient-controlled local Larmor adjustment (GC-LOLA) in the presence of fat. A nine-slice SMS-bSSFP sequence using RF-CAIPI with GC-LOLA with high spatial resolution (1.4 × 1.4 mm2 ) and a conventional three-slice sequence with conventional spatial resolution (1.9 × 1.9 mm2 ) were then acquired in 10 patients under rest conditions. Qualitative assessment was performed to assess image quality and perceived signal-to-noise ratio (SNR) on a 4-point scale (0: poor image quality/low SNR; 3: excellent image quality/high SNR), and the number of myocardial segments with diagnostic image quality was recorded. Quantitative measurements of myocardial sharpness and upslope index were performed. RESULTS: Fat signal leakage was significantly higher for blipped CAIPI than for RF-CAIPI with GC-LOLA (7.9% vs. 1.2%, p = 0.010). All 10 SMS-bSSFP perfusion datasets resulted in 16/16 diagnostic myocardial segments. There were no significant differences between the SMS and conventional acquisitions in terms of image quality (2.6 ± 0.6 vs. 2.7 ± 0.2, p = 0.8) or perceived SNR (2.8 ± 0.3 vs. 2.7 ± 0.3, p = 0.3). Inter-reader variability was good for both image quality (ICC = 0.84) and perceived SNR (ICC = 0.70). Myocardial sharpness was improved using the SMS sequence compared to the conventional sequence (0.37 ± 0.08 vs 0.32 ± 0.05, p < 0.001). There was no significant difference between measurements of upslope index for the SMS and conventional sequences (0.11 ± 0.04 vs. 0.11 ± 0.03, p = 0.84). CONCLUSION: SMS-bSSFP with multiband factor 3 and compressed sensing reconstruction enables cardiac MR perfusion imaging with three-fold increased spatial coverage and improved myocardial sharpness compared to a conventional sequence, without compromising perceived SNR, image quality, upslope index or number of diagnostic segments.


Subject(s)
Image Enhancement , Image Interpretation, Computer-Assisted , Heart Ventricles/diagnostic imaging , Humans , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Perfusion , Reproducibility of Results
6.
Magn Reson Med ; 87(2): 702-717, 2022 02.
Article in English | MEDLINE | ID: mdl-34554603

ABSTRACT

PURPOSE: To investigate the use of a high flip-angle (HFA) balanced SSFP (bSSFP) reference image (in comparison to conventional proton density [PD]-weighted reference images) for conversion of bSSFP myocardial perfusion images into dynamic T1 maps for improved myocardial blood flow (MBF) quantification at 1.5 T. METHODS: The HFA-bSSFP (flip angle [FA] = 50°), PD gradient-echo (PD-GRE; FA = 5°), and PD-bSSFP (FA = 8°) reference images were acquired before a dual-sequence bSSFP perfusion acquisition. Simulations were used to study accuracy and precision of T1 and MBF quantification using the three techniques. The accuracy and precision of T1 , and the precision and intersegment variability of MBF were compared among the three techniques in 8 patients under rest conditions. RESULTS: In simulations, HFA-bSSFP demonstrated improved T1 /MBF precision (higher T1 /MBF SD of 30%-80%/50%-100% and 30%-90%/60%-115% for PD-GRE and PD-bSSFP, respectively). Proton density-GRE and PD-bSSFP were more sensitive to effective FA than HFA-bSSFP (maximum T1 /MBF errors of 13%/43%, 20%/43%, and 1%/3%, respectively). Sensitivity of all techniques (defined as T1 /MBF errors) to native T1 , native T2 , and effective saturation efficiency were negligible (<1%/<1%), moderate (<14%/<19%), and high (<63%/<94%), respectively. In vivo, no difference in T1 accuracy was observed among HFA-bSSFP, PD-GRE, and PD-bSSFP (-9 ± 44 ms vs -28 ± 55 ms vs -22 ± 71 ms, respectively; p > .08). The HFA-bSSFP led to improved T1 /MBF precision (T1 /MBF SD: 41 ± 19 ms/0.24 ± 0.08 mL/g/min vs PD-GRE: 48 ± 20 ms/0.29 ± 0.09 mL/g/min and PD-bSSFP: 59 ± 23 ms/0.33 ± 0.11 mL/g/min; p ≤ .02) and lower MBF intersegment variability (0.14 ± 0.09 mL/g/min vs PD-GRE: 0.21 ± 0.09 mL/g/min and PD-bSSFP: 0.20 ± 0.10 mL/g/min; p ≤ .046). CONCLUSION: We have demonstrated the feasibility of using a HFA-bSSFP reference image for MBF quantification of bSSFP perfusion imaging at 1.5 T. Results from simulations demonstrate that the HFA-bSSFP reference image results in improved precision and reduced sensitivity to effective FA compared with conventional techniques using a PD reference image. Preliminary in vivo data acquired at rest also demonstrate improved precision and intersegment variability using the HFA-bSSFP technique compared with PD techniques; however, a clinical study in patients with coronary artery disease under stress conditions is required to determine the clinical significance of this finding.


Subject(s)
Coronary Artery Disease , Myocardial Perfusion Imaging , Coronary Circulation , Humans , Magnetic Resonance Imaging , Reproducibility of Results
7.
Magn Reson Med ; 86(2): 663-676, 2021 08.
Article in English | MEDLINE | ID: mdl-33749026

ABSTRACT

PURPOSE: To enable all-systolic first-pass rest myocardial perfusion with long saturation times. To investigate the change in perfusion contrast and dark rim artefacts through simulations and surrogate measurements. METHODS: Simulations were employed to investigate optimal saturation time for myocardium-perfusion defect contrast and blood-to-myocardium signal ratios. Two saturation recovery blocks with long/short saturation times (LTS/STS) were employed to image 3 slices at end-systole and diastole. Simultaneous multi-slice balanced steady state free precession imaging and compressed sensing acceleration were combined. The sequence was compared to a 3 slice-by-slice clinical protocol in 10 patients. Quantitative assessment of myocardium-peak pre contrast and blood-to-myocardium signal ratios, as well as qualitative assessment of perceived SNR, image quality, blurring, and dark rim artefacts, were performed. RESULTS: Simulations showed that with a bolus of 0.075 mmol/kg, a LTS of 240-470 ms led to a relative increase in myocardium-perfusion defect contrast of 34% ± 9%-28% ± 27% than a STS = 120 ms, while reducing blood-to-myocardium signal ratio by 18% ± 10%-32% ± 14% at peak myocardium. With a bolus of 0.05 mmol/kg, LTS was 320-570 ms with an increase in myocardium-perfusion defect contrast of 63% ± 13%-62% ± 29%. Across patients, LTS led to an average increase in myocardium-peak pre contrast of 59% (P < .001) at peak myocardium and a lower blood-to-myocardium signal ratio of 47% (P < .001) and 15% (P < .001) at peak blood/myocardium. LTS had improved motion robustness (P = .002), image quality (P < .001), and decreased dark rim artefacts (P = .008) than the clinical protocol. CONCLUSION: All-systolic rest perfusion can be achieved by combining simultaneous multi-slice and compressed sensing acceleration, enabling 3-slice cardiac coverage with reduced motion and dark rim artefacts. Numerical simulations indicate that myocardium-perfusion defect contrast increases at LTS.


Subject(s)
Magnetic Resonance Imaging , Myocardial Perfusion Imaging , Acceleration , Contrast Media , Heart/diagnostic imaging , Humans , Perfusion , Systole
8.
MAGMA ; 34(4): 513-521, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33355719

ABSTRACT

OBJECTIVE: To compare integrated slice-specific dynamic shim (iShim) with distortion correction post-processing to conventional 3D volume shim for the reduction of artefacts and signal loss in 1.5 T whole-body diffusion-weighted imaging (WB-DWI). METHODS: Ten volunteers underwent WB-DWI using conventional 3D volume shim and iShim. Forty-eight consecutive patients underwent WB-DWI with either volume shim (n = 24) or iShim (n = 24) only. For all subjects, displacement of the spinal cord at imaging station interfaces was measured on composed b = 900 s/mm2 images. The signal intensity ratios, computed as the average signal intensity in a region of high susceptibility gradient (sternum) divided by the average signal intensity in a region of low susceptibility gradient (vertebral body), were compared in volunteers. For patients, image quality was graded from 1 to 5 (1 = Poor, 5 = Excellent). Signal intensity discontinuity scores were recorded from 1 to 4 (1 = 2 + steps, 4 = 0 steps). A p value of < 0.05 was considered significant. RESULTS: Spinal cord displacement artefacts were lower with iShim (p < 0.05) at the thoracic junction in volunteers and at the cervical and thoracic junctions in patients (p < 0.05). The sternum/vertebra signal intensity ratio in healthy volunteers was higher with iShim compared with the volume shim sequence (p < 0.05). There were no significant differences between the volume shim and iShim patient groups in terms of image quality and signal intensity discontinuity scores. CONCLUSION: iShim reduced the degree of spinal cord displacement artefact between imaging stations and susceptibility-gradient-induced signal loss.


Subject(s)
Artifacts , Diffusion Magnetic Resonance Imaging , Echo-Planar Imaging , Humans , Spinal Cord/diagnostic imaging , Spine
9.
Magn Reson Med ; 85(5): 2661-2671, 2021 05.
Article in English | MEDLINE | ID: mdl-33270946

ABSTRACT

PURPOSE: To develop and evaluate a fast respiratory navigator (fastNAV) for cardiac MR perfusion imaging with subject-specific prospective slice tracking. METHODS: A fastNAV was developed for dynamic contrast-enhanced cardiac MR perfusion imaging by combining spatially nonselective saturation with slice-selective tip-up and slice-selective excitation pulses. The excitation slice was angulated from the tip-up slice in the transverse plane to overlap only in the right hemidiaphragm for suppression of signal outside the right hemidiaphragm. A calibration scan was developed to enable the estimation of subject-specific tracking factors. Perfusion imaging using subject-specific fastNAV-based slice tracking was then compared to a conventional sequence (ie, without slice tracking) in 10 patients under free-breathing conditions. Respiratory motion in perfusion images was quantitatively assessed by measuring the average overlap of the left ventricle across images (avDice, 0:no overlap/1:perfect overlap) and the average displacement of the center of mass of the left ventricle (avCoM). Image quality was subjectively assessed using a 4-point scoring system (1: poor, 4: excellent). RESULTS: The fastNAV calibration was successfully performed in all subjects (average tracking factor of 0.46 ± 0.13, R = 0.94 ± 0.03). Prospective motion correction using fastNAV led to higher avDice (0.94 ± 0.02 vs. 0.90 ± 0.03, P < .001) and reduced avCoM (4.03 ± 0.84 vs. 5.22 ± 1.22, P < .001). There were no statistically significant differences between the 2 sequences in terms of image quality (both sequences: median = 3 and interquartile range = 3-4, P = 1). CONCLUSION: fastNAV enables fast and robust right hemidiaphragm motion tracking in a perfusion sequence. In combination with subject-specific slice tracking, fastNAV reduces the effect of respiratory motion during free-breathing cardiac MR perfusion imaging.


Subject(s)
Myocardial Perfusion Imaging , Heart/diagnostic imaging , Humans , Magnetic Resonance Imaging , Motion , Prospective Studies
10.
Magn Reson Med ; 84(6): 3103-3116, 2020 12.
Article in English | MEDLINE | ID: mdl-32530064

ABSTRACT

PURPOSE: To implement and evaluate a pseudorandom undersampling scheme for combined simultaneous multislice (SMS) balanced SSFP (bSSFP) and compressed-sensing (CS) reconstruction to enable myocardial perfusion imaging with high spatial resolution and coverage at 1.5 T. METHODS: A prospective pseudorandom undersampling scheme that is compatible with SMS-bSSFP phase-cycling requirements and CS was developed. The SMS-bSSFP CS with pseudorandom and linear undersampling schemes were compared in a phantom. A high-resolution (1.4 × 1.4 mm2 ) six-slice SMS-bSSFP CS perfusion sequence was compared with a conventional (1.9 × 1.9 mm2 ) three-slice sequence in 10 patients. Qualitative assessment of image quality, perceived SNR, and number of diagnostic segments and quantitative measurements of sharpness, upslope index, and contrast ratio were performed. RESULTS: In phantom experiments, pseudorandom undersampling resulted in residual artifact (RMS error) reduction by a factor of 7 compared with linear undersampling. In vivo, the proposed sequence demonstrated higher perceived SNR (2.9 ± 0.3 vs. 2.2 ± 0.6, P = .04), improved sharpness (0.35 ± 0.03 vs. 0.32 ± 0.05, P = .01), and a higher number of diagnostic segments (100% vs. 94%, P = .03) compared with the conventional sequence. There were no significant differences between the sequences in terms of image quality (2.5 ± 0.4 vs. 2.8 ± 0.2, P = .08), upslope index (0.11 ± 0.02 vs. 0.10 ± 0.01, P = .3), or contrast ratio (3.28 ± 0.35 vs. 3.36 ± 0.43, P = .7). CONCLUSION: A pseudorandom k-space undersampling compatible with SMS-bSSFP and CS reconstruction has been developed and enables cardiac MR perfusion imaging with increased spatial resolution and myocardial coverage, increased number of diagnostic segments and perceived SNR, and no difference in image quality, upslope index, and contrast ratio.


Subject(s)
Magnetic Resonance Imaging , Myocardial Perfusion Imaging , Artifacts , Humans , Image Processing, Computer-Assisted , Perfusion , Prospective Studies
11.
Clin Lymphoma Myeloma Leuk ; 18(12): 822-828, 2018 12.
Article in English | MEDLINE | ID: mdl-30219657

ABSTRACT

BACKGROUND: Whole body magnetic resonance imaging (WBMRI) is currently recommended by guidelines for the assessment of myeloma. This will inevitably result in incidental findings. We aimed to assess the frequency of extraskeletal incidental findings and the added value of contrast-enhanced (CE) T1-weighted (T1-W) and diffusion-weighted (DWI) sequences for their characterization in a single WBMRI examination. PATIENTS AND METHODS: We performed 1.5 T WBMRI in 100 patients (53 female; median age, 65 years) with plasma-cell disorders from January 2014 to July 2017. T2-weighted sequences were reviewed initially for incidental findings, followed by sequential review of T1-W, CE T1-W, and DWI sequences for lesion characterization. Descriptive statistics were undertaken. RESULTS: A total of 348 incidental findings were detected in 97 (97%) of 100 patients; only 38 (10.9%) of 348 findings were indeterminate. T1-W sequences increased diagnostic confidence in the characterization of 12 (31.6%) of 38; CE T1-W sequences in the characterization of 16 (50%) of 32; and DWI increased diagnostic confidence in 21 (55.3%) of 38 compared to the T2-weighted sequence alone. CONCLUSION: Incidental findings are common, but the majority are of no clinical consequence. No additional cancers were noted in our series. DWI and CE T1-W sequences increased diagnostic confidence in 50% of indeterminate findings and may reduce the need for further investigation.


Subject(s)
Diffusion Magnetic Resonance Imaging , Magnetic Resonance Imaging , Multiple Myeloma/diagnosis , Neoplasms, Plasma Cell/diagnosis , Adult , Aged , Aged, 80 and over , Diagnosis, Differential , Diffusion Magnetic Resonance Imaging/methods , Female , Humans , Incidental Findings , Magnetic Resonance Imaging/methods , Male , Middle Aged , Multimodal Imaging/methods , Whole Body Imaging
12.
Child Maltreat ; 15(3): 229-41, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20498128

ABSTRACT

The need to make meaning of childhood sexual abuse (CSA) is common and often persists long after the abuse ends. Although believed to be essential for healthy recovery, there is a paucity of research on how youth process their CSA experiences. The current study identified individual differences in the ways youth process their CSA and examined associations with psychosocial adjustment. A sample of 108 youth with confirmed abuse histories enrolled in the study within 8 weeks of abuse discovery, when they were between 8 and 15 years old. Six years later, they participated in interviews about their CSA experiences, reactions, and perceived effects. Using a coding system developed for this study, youths' CSA narratives were reliably classified with one of three processing strategies: Constructive (13.9%), Absorbed (50%), or Avoidant (36.1%). Absorbed youth reported the highest levels of psychopathological symptoms, sexual problems, and abuse-specific stigmatization, whereas Constructive youth tended to report the fewest problems. Avoidant youth showed significantly more problems than Constructive youth in some but not all areas. Interventions that build healthy processing skills may promote positive recovery by providing tools for constructing adaptive meanings of the abuse, both in its immediate aftermath and over time.


Subject(s)
Adaptation, Psychological , Child Abuse, Sexual/psychology , Social Adjustment , Adolescent , Child , Female , Humans , Male , Prospective Studies , Psychological Tests , Sexual Behavior/psychology , Stereotyping
SELECTION OF CITATIONS
SEARCH DETAIL
...