Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Sci Adv ; 5(11): eaat9476, 2019 11.
Article in English | MEDLINE | ID: mdl-31723596

ABSTRACT

Measuring the behavior of redox-active molecules in space and time is crucial for understanding chemical and biological systems and for developing new technologies. Optical schemes are noninvasive and scalable, but usually have a slow response compared to electrical detection methods. Furthermore, many fluorescent molecules for redox detection degrade in brightness over long exposure times. Here, we show that the photoluminescence of "pixel" arrays of monolayer MoS2 can image spatial and temporal changes in redox molecule concentration. Because of the strong dependence of MoS2 photoluminescence on doping, changes in the local chemical potential substantially modulate the photoluminescence of MoS2, with a sensitivity of 0.9 mV / Hz on a 5 µm × 5 µm pixel, corresponding to better than parts-per-hundred changes in redox molecule concentration down to nanomolar concentrations at 100-ms frame rates. This provides a new strategy for visualizing chemical reactions and biomolecules with a two-dimensional material screen.

2.
Nat Nanotechnol ; 11(9): 741-6, 2016 09.
Article in English | MEDLINE | ID: mdl-27294504

ABSTRACT

A major achievement of the past decade has been the realization of macroscopic quantum systems by exploiting the interactions between optical cavities and mechanical resonators. In these systems, phonons are coherently annihilated or created in exchange for photons. Similar phenomena have recently been observed through phonon-cavity coupling-energy exchange between the modes of a single system mediated by intrinsic material nonlinearity. This has so far been demonstrated primarily for bulk crystalline, high-quality-factor (Q > 10(5)) mechanical systems operated at cryogenic temperatures. Here, we propose graphene as an ideal candidate for the study of such nonlinear mechanics. The large elastic modulus of this material and capability for spatial symmetry breaking via electrostatic forces is expected to generate a wealth of nonlinear phenomena, including tunable intermodal coupling. We have fabricated circular graphene membranes and report strong phonon-cavity effects at room temperature, despite the modest Q factor (∼100) of this system. We observe both amplification into parametric instability (mechanical lasing) and the cooling of Brownian motion in the fundamental mode through excitation of cavity sidebands. Furthermore, we characterize the quenching of these parametric effects at large vibrational amplitudes, offering a window on the all-mechanical analogue of cavity optomechanics, where the observation of such effects has proven elusive.

3.
Science ; 344(6191): 1489-92, 2014 Jun 27.
Article in English | MEDLINE | ID: mdl-24970080

ABSTRACT

Electrons in two-dimensional crystals with a honeycomb lattice structure possess a valley degree of freedom (DOF) in addition to charge and spin. These systems are predicted to exhibit an anomalous Hall effect whose sign depends on the valley index. Here, we report the observation of this so-called valley Hall effect (VHE). Monolayer MoS2 transistors are illuminated with circularly polarized light, which preferentially excites electrons into a specific valley, causing a finite anomalous Hall voltage whose sign is controlled by the helicity of the light. No anomalous Hall effect is observed in bilayer devices, which have crystal inversion symmetry. Our observation of the VHE opens up new possibilities for using the valley DOF as an information carrier in next-generation electronics and optoelectronics.

4.
Nano Lett ; 11(4): 1814-8, 2011 Apr 13.
Article in English | MEDLINE | ID: mdl-21434673

ABSTRACT

We achieve direct electrical readout of the wavelength and polarization dependence of the plasmon resonance in individual gold nanogap antennas by positioning a graphene nanoconstriction within the gap as a localized photodetector. The polarization sensitivities can be as large as 99%, while the plasmon-induced photocurrent enhancement is 2-100. The plasmon peak frequency, polarization sensitivity, and photocurrent enhancement all vary between devices, indicating the degree to which the plasmon resonance is sensitive to nanometer-scale irregularities.


Subject(s)
Electrodes , Graphite/chemistry , Graphite/radiation effects , Nanostructures/chemistry , Nanotechnology/instrumentation , Photometry/instrumentation , Surface Plasmon Resonance/instrumentation , Equipment Design , Equipment Failure Analysis , Light , Nanostructures/radiation effects , Particle Size
5.
Opt Express ; 19(1): 141-6, 2011 Jan 03.
Article in English | MEDLINE | ID: mdl-21263550

ABSTRACT

We demonstrate terahertz (THz) imaging and spectroscopy of a 15 × 15-mm2 single-layer graphene film on Si using broadband THz pulses. The THz images clearly map out the THz carrier dynamics of the graphene-on-Si sample, allowing us to measure sheet conductivity with sub-mm resolution without fabricating electrodes. The THz carrier dynamics are dominated by intraband transitions and the THz-induced electron motion is characterized by a flat spectral response. A theoretical analysis based on the Fresnel coefficients for a metallic thin film shows that the local sheet conductivity varies across the sample from σ(s) = 1.7 × 10(-3) to 2.4 × 10(-3) Ω(-1) (sheet resistance, ρ(s) = 420 - 590 Ω/sq).

6.
Nano Lett ; 8(5): 1399-403, 2008 May.
Article in English | MEDLINE | ID: mdl-18402478

ABSTRACT

We carried out measurements on nanoelectromechanical systems based on multilayer graphene sheets suspended over trenches in silicon oxide. The motion of the suspended sheets was electrostatically driven at resonance using applied radio frequency voltages. The mechanical vibrations were detected using a novel form of scanning probe microscopy, which allowed identification and spatial imaging of the shape of the mechanical eigenmodes. In as many as half the resonators measured, we observed a new class of exotic nanoscale vibration eigenmodes not predicted by the elastic beam theory, where the amplitude of vibration is maximum at the free edges. By modeling the suspended sheets with the finite element method, these edge eigenmodes are shown to be the result of nonuniform stress with remarkably large magnitudes (up to 1.5 GPa). This nonuniform stress, which arises from the way graphene is prepared by pressing or rubbing bulk graphite against another surface, should be taken into account in future studies on electronic and mechanical properties of graphene.


Subject(s)
Graphite/chemistry , Image Interpretation, Computer-Assisted/methods , Materials Testing/methods , Microscopy, Scanning Probe/methods , Nanostructures/chemistry , Nanostructures/ultrastructure , Nanotechnology/methods , Particle Size , Stress, Mechanical , Vibration
7.
Nature ; 452(7186): 448-52, 2008 Mar 27.
Article in English | MEDLINE | ID: mdl-18368113

ABSTRACT

Electrons in atoms possess both spin and orbital degrees of freedom. In non-relativistic quantum mechanics, these are independent, resulting in large degeneracies in atomic spectra. However, relativistic effects couple the spin and orbital motion, leading to the well-known fine structure in their spectra. The electronic states in defect-free carbon nanotubes are widely believed to be four-fold degenerate, owing to independent spin and orbital symmetries, and also to possess electron-hole symmetry. Here we report measurements demonstrating that in clean nanotubes the spin and orbital motion of electrons are coupled, thereby breaking all of these symmetries. This spin-orbit coupling is directly observed as a splitting of the four-fold degeneracy of a single electron in ultra-clean quantum dots. The coupling favours parallel alignment of the orbital and spin magnetic moments for electrons and antiparallel alignment for holes. Our measurements are consistent with recent theories that predict the existence of spin-orbit coupling in curved graphene and describe it as a spin-dependent topological phase in nanotubes. Our findings have important implications for spin-based applications in carbon-based systems, entailing new design principles for the realization of quantum bits (qubits) in nanotubes and providing a mechanism for all-electrical control of spins in nanotubes.

8.
Nano Lett ; 5(2): 203-7, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15794596

ABSTRACT

We measure electron tunneling in transistors made from C(140), a molecule with a mass-spring-mass geometry chosen as a model system to study electron-vibration coupling. We observe vibration-assisted tunneling at an energy corresponding to the stretching mode of C(140). Molecular modeling provides explanations for why this mode couples more strongly to electron tunneling than to the other internal modes of the molecule. We make comparisons between the observed tunneling rates and those expected from the Franck-Condon model.


Subject(s)
Carbon/chemistry , Electrochemistry/methods , Electrons , Models, Chemical , Nanostructures/chemistry , Nanostructures/ultrastructure , Transistors, Electronic , Carbon/analysis , Computer Simulation , Electric Conductivity , Electron Transport , Materials Testing , Nanostructures/analysis , Vibration
9.
Phys Rev Lett ; 92(4): 046401, 2004 Jan 30.
Article in English | MEDLINE | ID: mdl-14995390

ABSTRACT

We use an atomic force microscope (AFM) tip to locally probe the electronic properties of semiconducting carbon nanotube transistors. A gold-coated AFM tip serves as a voltage or current probe in three-probe measurement setup. Using the tip as a movable current probe, we investigate the scaling of the device properties with channel length. Using the tip as a voltage probe, we study the properties of the contacts. We find that Au makes an excellent contact in the p region, with no Schottky barrier. In the n region, large contact resistances were found which dominate the transport properties.

10.
Phys Rev Lett ; 87(21): 215502, 2001 Nov 19.
Article in English | MEDLINE | ID: mdl-11736348

ABSTRACT

The thermal conductivity and thermoelectric power of a single carbon nanotube were measured using a microfabricated suspended device. The observed thermal conductivity is more than 3000 W/K m at room temperature, which is 2 orders of magnitude higher than the estimation from previous experiments that used macroscopic mat samples. The temperature dependence of the thermal conductivity of nanotubes exhibits a peak at 320 K due to the onset of umklapp phonon scattering. The measured thermoelectric power shows linear temperature dependence with a value of 80 microV/K at room temperature.

11.
Phys Rev Lett ; 87(16): 166801, 2001 Oct 15.
Article in English | MEDLINE | ID: mdl-11690223

ABSTRACT

We have studied tunneling of electrons into multiwall carbon nanotubes (NTs) in NT-gold and NT-NT junctions, the latter created by atomic force microscope manipulation. The tunneling conductance goes to zero as the energy (temperature and bias) is reduced, and the functional form is consistent with a power law. The exponents depend upon sample geometry. The relationship between these results and theories for tunneling into ballistic and disordered metals is discussed.

12.
Phys Rev Lett ; 84(26 Pt 1): 6082-5, 2000 Jun 26.
Article in English | MEDLINE | ID: mdl-10991129

ABSTRACT

We use electrostatic force microscopy and scanned gate microscopy to probe the conducting properties of carbon nanotubes at room temperature. Multiwalled carbon nanotubes are shown to be diffusive conductors, while metallic single-walled carbon nanotubes are ballistic conductors over micron lengths. Semiconducting single-walled carbon nanotubes are shown to have a series of large barriers to conduction along their length. These measurements are also used to probe the contact resistance and locate breaks in carbon nanotube circuits.

13.
Science ; 268(5208): 272-3, 1995 Apr 14.
Article in English | MEDLINE | ID: mdl-17814791

ABSTRACT

Highly localized chemical catalysis was carried out on the surface groups of a self-assembled monolayer with a scanning probe device. With the use of a platinum-coated atomic force microscope tip, the terminal azide groups of the monolayer were catalytically hydrogenated with high spatial resolution. The newly created amino groups were then covalently modified to generate new surface structures. By varying the nature of the catalyst and the chemical composition of the surface, it may be possible to synthesize molecular assemblies not readily produced by existing microfabrication techniques.

SELECTION OF CITATIONS
SEARCH DETAIL
...