Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Kidney Int ; 105(6): 1157-1159, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38777398

ABSTRACT

Chen et al. identify dysregulation of the transcriptional activator Yes-associated protein in the podocytes of diabetic mouse and human kidneys. Podocyte Yes-associated protein deficiency led to downregulation of the key transcription factor Wilms' tumor 1, and worsened podocyte injury in a mouse model of diabetic kidney injury. Yes-associated protein may therefore play a critical role in diabetic podocyte injury via regulation of Wilms' tumor 1 expression.


Subject(s)
Adaptor Proteins, Signal Transducing , Diabetic Nephropathies , Podocytes , Transcription Factors , WT1 Proteins , YAP-Signaling Proteins , Podocytes/metabolism , Podocytes/pathology , Animals , Humans , YAP-Signaling Proteins/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , WT1 Proteins/metabolism , WT1 Proteins/genetics , Mice , Diabetic Nephropathies/pathology , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/etiology , Phosphoproteins/metabolism , Phosphoproteins/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics
2.
Sci Transl Med ; 16(737): eabm2090, 2024 03 06.
Article in English | MEDLINE | ID: mdl-38446901

ABSTRACT

Diabetic kidney disease (DKD) is the main cause of chronic kidney disease (CKD) and progresses faster in males than in females. We identify sex-based differences in kidney metabolism and in the blood metabolome of male and female individuals with diabetes. Primary human proximal tubular epithelial cells (PTECs) from healthy males displayed increased mitochondrial respiration, oxidative stress, apoptosis, and greater injury when exposed to high glucose compared with PTECs from healthy females. Male human PTECs showed increased glucose and glutamine fluxes to the TCA cycle, whereas female human PTECs showed increased pyruvate content. The male human PTEC phenotype was enhanced by dihydrotestosterone and mediated by the transcription factor HNF4A and histone demethylase KDM6A. In mice where sex chromosomes either matched or did not match gonadal sex, male gonadal sex contributed to the kidney metabolism differences between males and females. A blood metabolomics analysis in a cohort of adolescents with or without diabetes showed increased TCA cycle metabolites in males. In a second cohort of adults with diabetes, females without DKD had higher serum pyruvate concentrations than did males with or without DKD. Serum pyruvate concentrations positively correlated with the estimated glomerular filtration rate, a measure of kidney function, and negatively correlated with all-cause mortality in this cohort. In a third cohort of adults with CKD, male sex and diabetes were associated with increased plasma TCA cycle metabolites, which correlated with all-cause mortality. These findings suggest that differences in male and female kidney metabolism may contribute to sex-dependent outcomes in DKD.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Renal Insufficiency, Chronic , Adolescent , Adult , Humans , Female , Male , Animals , Mice , Sex Characteristics , Pyruvates , Glucose , Kidney
SELECTION OF CITATIONS
SEARCH DETAIL