Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Top Catal ; 61(3): 225-239, 2018.
Article in English | MEDLINE | ID: mdl-30956507

ABSTRACT

A cobalt rhenium catalyst active for ammonia synthesis at 400 °C and ambient pressure was studied using in situ XAS to elucidate the reducibility and local environment of the two metals during reaction conditions. The ammonia reactivity is greatly affected by the gas mixture used in the pre-treatment step. Following H2/Ar pre-treatment, a subsequent 20 min induction period is also observed before ammonia production occurs whereas ammonia production commences immediately following comparable H2/N2 pre-treatment. In situ XAS at the Co K-edge and Re LIII-edge show that cobalt initiates reduction, undergoing reduction between 225 and 300 °C, whereas reduction of rhenium starts at 300 °C. The reduction of rhenium is near complete below 400 °C, as also confirmed by H2-TPR measurements. A synergistic co-metal effect is observed for the cobalt rhenium system, as complete reduction of both cobalt and rhenium independently requires higher temperatures. The phases present in the cobalt rhenium catalyst during ammonia production following both pre-treatments are largely bimetallic Co-Re phases, and also monometallic Co and Re phases. The presence of nitrogen during the reduction step strongly promotes mixing of the two metals, and the bimetallic Co-Re phase is believed to be a pre-requisite for activity.

2.
Phys Chem Chem Phys ; 18(26): 17210-6, 2016 Jun 29.
Article in English | MEDLINE | ID: mdl-27182815

ABSTRACT

A modern industrial route for the manufacture of methyl methacrylate involves the reaction of methyl propanoate and formaldehyde over a silica-supported Cs catalyst. Although the process has been successfully commercialised, little is known about the surface interactions responsible for the forward chemistry. This work concentrates upon the interaction of methyl propanoate over a representative silica. A combination of infrared spectroscopy, inelastic neutron scattering, DFT calculations, X-ray diffraction and temperature-programmed desorption is used to deduce how the ester interacts with the silica surface.

3.
J Chem Phys ; 143(17): 174703, 2015 Nov 07.
Article in English | MEDLINE | ID: mdl-26547178

ABSTRACT

An iron based Fischer-Tropsch synthesis catalyst is evaluated using CO hydrogenation at ambient pressure as a test reaction and is characterised by a combination of inelastic neutron scattering (INS), powder X-ray diffraction, temperature-programmed oxidation, Raman scattering, and transmission electron microscopy. The INS spectrum of the as-prepared bulk iron oxide pre-catalyst (hematite, α-Fe2O3) is distinguished by a relatively intense band at 810 cm(-1), which has previously been tentatively assigned as a magnon (spinon) feature. An analysis of the neutron scattering intensity of this band as a function of momentum transfer unambiguously confirms this assignment. Post-reaction, the spinon feature disappears and the INS spectrum is characterised by the presence of a hydrocarbonaceous overlayer. A role for the application of INS in magnetic characterisation of iron based FTS catalysts is briefly considered.


Subject(s)
Carbon Monoxide/chemistry , Ferric Compounds/chemistry , Magnetics , Neutrons , Catalysis , Hydrogenation , Microscopy, Electron, Transmission , Spectrum Analysis, Raman
4.
Phys Chem Chem Phys ; 14(43): 15214-25, 2012 Nov 21.
Article in English | MEDLINE | ID: mdl-22914770

ABSTRACT

The methane reforming reaction with carbon dioxide as the oxidant over alumina-supported nickel and gold-doped nickel catalysts is studied using a variety of techniques such as reaction testing, vibrational spectroscopy (inelastic neutron scattering (INS), Raman scattering and infrared absorption), temperature-programmed oxidation (TPO), transmission electron microscopy and X-ray powder diffraction. The quantities of retained carbon and hydrogen are determined by TPO and INS, respectively. Minimal hydrogen retention indicates these catalysts to be very efficient at cycling hydrogen. The relative partitioning of hydrogen within the reaction media is used to formulate a qualitative description of the reaction kinetics. The presence of the gold modifier does not appear to provide any improvement in catalyst performance under the specified reaction conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...