Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 16198, 2022 09 28.
Article in English | MEDLINE | ID: mdl-36171277

ABSTRACT

A 1494 Dalton hemoglycin space polymer of Glycine18 Hydroxy-glycine4 Fe2O4 termed the "core unit" is part of a polymer of Glycine, Si, Fe and O that forms tubes, vesicles and a lattice structure. It has been isolated from four different CV3 meteorites and characterized by mass spectrometry, FIB/SIMS and X-ray analysis. In quantum calculations (HF and DF wB97X-D 6-31G) the polymer has an absorption at 480 nm that is dependent on rectus "R" (= dextro D) chirality in a hydroxy glycine residue whose C-terminus is bonded to an iron atom. The absorption originates in the Fe II state as a consequence of chiral symmetry breaking. In confirmation of theory, measurements at Diamond Light Source UK, on crystals of hemoglycin derived from Acfer-086 and Sutter's Mill meteorites have shown a strong 483 ± 3 nm absorption that confirms the proposed location of hydroxy glycine residues within the polymer. A high 483 nm to 580 nm absorption ratio points to an "R" chirality excess in hemoglycin, suggesting that 480 nm photons could have provided the energy for its replication in the protoplanetary disc.


Subject(s)
Iron , Polymers , Glycine , Iron/chemistry , X-Rays
3.
PLoS One ; 9(7): e103036, 2014.
Article in English | MEDLINE | ID: mdl-25048204

ABSTRACT

Hydrophobic polymer amide (HPA) could have been one of the first normal density materials to accrete in space. We present ab initio calculations of the energetics of amino acid polymerization via gas phase collisions. The initial hydrogen-bonded di-peptide is sufficiently stable to proceed in many cases via a transition state into a di-peptide with an associated bound water molecule of condensation. The energetics of polymerization are only favorable when the water remains bound. Further polymerization leads to a hydrophobic surface that is phase-separated from, but hydrogen bonded to, a small bulk water complex. The kinetics of the collision and subsequent polymerization are discussed for the low-density conditions of a molecular cloud. This polymer in the gas phase has the properties to make a topology, viz. hydrophobicity allowing phase separation from bulk water, capability to withstand large temperature ranges, versatility of form and charge separation. Its flexible tetrahedral carbon atoms that alternate with more rigid amide groups allow it to deform and reform in hazardous conditions and its density of hydrogen bonds provides adhesion that would support accretion to it of silicon and metal elements to form a stellar dust material.


Subject(s)
Amides , Polymers , Amino Acids , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions
4.
J R Soc Interface ; 5(20): 311-8, 2008 Mar 06.
Article in English | MEDLINE | ID: mdl-17848362

ABSTRACT

We consider an ancient protein, and water as a smooth surface, and show that the interaction of the two allows the protein to change its hydrogen bonding to encapsulate the water. This property could have made a three-dimensional microenvironment, 3-4 Gyr ago, for the evolution of subsequent complex water-based chemistry. Proteolipid, subunit c of ATP synthase, when presented with a water surface, changes its hydrogen bonding from an alpha-helix to beta-sheet-like configuration and moves away from its previous association with lipid to interact with water surface molecules. Protein sheets with an intra-sheet backbone spacing of 3.7A and inter-sheet spacing of 6.0 A hydrogen bond into long ribbons or continuous surfaces to completely encapsulate a water droplet. The resulting morphology is a spherical vesicle or a hexagonal crystal of water ice, encased by a skin of subunit c. Electron diffraction shows the crystals to be highly ordered and compressed and the protein skin to resemble beta-sheets. The protein skin can retain the entrapped water over a temperature rise from 123 to 223 K at 1 x 10(-4) Pa, whereas free water starts to sublime significantly at 153 K.


Subject(s)
ATP Synthetase Complexes/chemistry , ATP Synthetase Complexes/ultrastructure , Protein Subunits/chemistry , Water/chemistry , Crystallography , Hydrogen Bonding , Microscopy, Electron , Protein Conformation , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...