Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Mol Med ; 56(1): 129-141, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38212557

ABSTRACT

Arrestins are multifunctional proteins that regulate G-protein-coupled receptor (GPCR) desensitization, signaling, and internalization. The arrestin family consists of four subtypes: visual arrestin1, ß-arrestin1, ß-arrestin2, and visual arrestin-4. Recent studies have revealed the multifunctional roles of ß-arrestins beyond GPCR signaling, including scaffolding and adapter functions, and physically interacting with non-GPCR receptors. Increasing evidence suggests that ß-arrestins are involved in the pathogenesis of a variety of neurodegenerative diseases, including Alzheimer's disease (AD), frontotemporal dementia (FTD), and Parkinson's disease (PD). ß-arrestins physically interact with γ-secretase, leading to increased production and accumulation of amyloid-beta in AD. Furthermore, ß-arrestin oligomers inhibit the autophagy cargo receptor p62/SQSTM1, resulting in tau accumulation and aggregation in FTD. In PD, ß-arrestins are upregulated in postmortem brain tissue and an MPTP model, and the ß2AR regulates SNCA gene expression. In this review, we aim to provide an overview of ß-arrestin1 and ß-arrestin2, and describe their physiological functions and roles in neurodegenerative diseases. The multifaceted roles of ß-arrestins and their involvement in neurodegenerative diseases suggest that they may serve as promising therapeutic targets.


Subject(s)
Alzheimer Disease , Frontotemporal Dementia , Neurodegenerative Diseases , Humans , beta-Arrestins/metabolism , Arrestin/metabolism , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/therapy , Receptors, G-Protein-Coupled/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/etiology
2.
Hum Mol Genet ; 31(23): 3987-4005, 2022 11 28.
Article in English | MEDLINE | ID: mdl-35786718

ABSTRACT

Coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) is a mitochondrial protein that plays important roles in cristae structure, oxidative phosphorylation and apoptosis. Multiple mutations in CHCHD2 have been associated with Lewy body disorders (LBDs), such as Parkinson's disease (PD) and dementia with Lewy bodies, with the CHCHD2-T61I mutation being the most widely studied. However, at present, only CHCHD2 knockout or CHCHD2/CHCHD10 double knockout mouse models have been investigated. They do not recapitulate the pathology seen in patients with CHCHD2 mutations. We generated the first transgenic mouse model expressing the human PD-linked CHCHD2-T61I mutation driven by the mPrP promoter. We show that CHCHD2-T61I Tg mice exhibit perinuclear mitochondrial aggregates, neuroinflammation, and have impaired long-term synaptic plasticity associated with synaptic dysfunction. Dopaminergic neurodegeneration, a hallmark of PD, is also observed along with α-synuclein pathology. Significant motor dysfunction is seen with no changes in learning and memory at 1 year of age. A minor proportion of the CHCHD2-T61I Tg mice (~10%) show a severe motor phenotype consistent with human Pisa Syndrome, an atypical PD phenotype. Unbiased proteomics analysis reveals surprising increases in many insoluble proteins predominantly originating from mitochondria and perturbing multiple canonical biological pathways as assessed by ingenuity pathway analysis, including neurodegenerative disease-associated proteins such as tau, cofilin, SOD1 and DJ-1. Overall, CHCHD2-T61I Tg mice exhibit pathological and motor changes associated with LBDs, indicating that this model successfully captures phenotypes seen in human LBD patients with CHCHD2 mutations and demonstrates changes in neurodegenerative disease-associated proteins, which delineates relevant pathological pathways for further investigation.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Humans , Animals , Mice , Parkinson Disease/metabolism , DNA-Binding Proteins/genetics , Transcription Factors/metabolism , Neurodegenerative Diseases/metabolism , Mitochondrial Proteins/genetics , Mutation , Disease Models, Animal
3.
Life Sci Alliance ; 5(3)2022 03.
Article in English | MEDLINE | ID: mdl-34862271

ABSTRACT

G protein-coupled receptors (GPCRs) have been shown to play integral roles in Alzheimer's disease pathogenesis. However, it is unclear how diverse GPCRs similarly affect Aß and tau pathogenesis. GPCRs share a common mechanism of action via the ß-arrestin scaffolding signaling complexes, which not only serve to desensitize GPCRs by internalization, but also mediate multiple downstream signaling events. As signaling via the GPCRs, ß2-adrenergic receptor (ß2AR), and metabotropic glutamate receptor 2 (mGluR2) promotes hyperphosphorylation of tau, we hypothesized that ß-arrestin1 represents a point of convergence for such pathogenic activities. Here, we report that ß-arrestins are not only essential for ß2AR and mGluR2-mediated increase in pathogenic tau but also show that ß-arrestin1 levels are increased in brains of Frontotemporal lobar degeneration (FTLD-tau) patients. Increased ß-arrestin1 in turn drives the accumulation of pathogenic tau, whereas reduced ARRB1 alleviates tauopathy and rescues impaired synaptic plasticity and cognitive impairments in PS19 mice. Biochemical and cellular studies show that ß-arrestin1 drives tauopathy by destabilizing microtubules and impeding p62/SQSTM1 autophagy flux by interfering with p62 body formation, which promotes pathogenic tau accumulation.


Subject(s)
Autophagy/genetics , Microtubules/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Tauopathies/etiology , Tauopathies/metabolism , beta-Arrestin 1/genetics , beta-Arrestin 1/metabolism , Animals , Biomarkers , Cell Line , Disease Models, Animal , Disease Susceptibility , Gene Expression , Humans , Mice , Mice, Transgenic , Neurons , Protein Transport
SELECTION OF CITATIONS
SEARCH DETAIL