Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Med Chem Lett ; 12(9): 1421-1426, 2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34527179

ABSTRACT

Anti-Wolbachia therapy has been identified as a viable treatment for combating filarial diseases. Phenotypic screening revealed a series of pyrazolopyrimidine hits with potent anti-Wolbachia activity. This paper focuses on the exploration of the SAR for this chemotype, with improvement of metabolic stability and solubility profiles using medicinal chemistry approaches. Organic synthesis has enabled functionalization of the pyrazolopyrimidine core at multiple positions, generating a library of compounds of which many analogues possess nanomolar activity against Wolbachia in vitro with improved DMPK parameters. A lead compound, 15f, was selected for in vivo pharmacokinetics (PK) profiling in mice. The combination of potent anti-Wolbachia activity in two in vitro assessments plus the exceptional oral PK profiles in mice puts this lead compound in a strong position for in vivo proof-of-concept pharmacodynamics studies and demonstrates the strong potential for further optimization and development of this series for treatment of filariasis in the future.

2.
Nat Commun ; 10(1): 11, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30602718

ABSTRACT

Nematodes causing lymphatic filariasis and onchocerciasis rely on their bacterial endosymbiont, Wolbachia, for survival and fecundity, making Wolbachia a promising therapeutic target. Here we perform a high-throughput screen of AstraZeneca's 1.3 million in-house compound library and identify 5 novel chemotypes with faster in vitro kill rates (<2 days) than existing anti-Wolbachia drugs that cure onchocerciasis and lymphatic filariasis. This industrial scale anthelmintic neglected tropical disease (NTD) screening campaign is the result of a partnership between the Anti-Wolbachia consortium (A∙WOL) and AstraZeneca. The campaign was informed throughout by rational prioritisation and triage of compounds using cheminformatics to balance chemical diversity and drug like properties reducing the chance of attrition from the outset. Ongoing development of these multiple chemotypes, all with superior time-kill kinetics than registered antibiotics with anti-Wolbachia activity, has the potential to improve upon the current therapeutic options and deliver improved, safer and more selective macrofilaricidal drugs.


Subject(s)
Drug Discovery , Filaricides/analysis , High-Throughput Screening Assays , Aedes , Animals , Cell Line , Wolbachia
SELECTION OF CITATIONS
SEARCH DETAIL
...