Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Physiol (1985) ; 137(2): 374-381, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38961825

ABSTRACT

The sympathetic nervous system is critical for regulating blood pressure (BP) via the arterial baroreflex and sympathetic transduction in the peripheral vasculature. These mechanisms interact, and both may be altered with aging and impacted by menopause. Although age-related decreases in sympathetic transduction have been demonstrated in women, it remains unclear whether sympathetic baroreflex sensitivity (BRS) is impaired in postmenopausal women (POST). We tested the hypothesis that sympathetic BRS would be enhanced in POST compared with premenopausal women (PRE). We examined beat-by-beat BP and muscle sympathetic nerve activity (MSNA) in 19 PRE (22 ± 2 yr, 22 ± 3 kg/m2) and 12 POST (57 ± 5 yr, 24 ± 2 kg/m2) during 10 min of rest. Spontaneous sympathetic BRS was quantified as the slope of a linear regression between MSNA burst incidence and diastolic BP. Sympathetic transduction to mean arterial pressure (MAP) for the 10 cardiac cycles following spontaneous MSNA bursts was assessed via signal averaging method. Resting MAP was similar (PRE: 82 ± 8 vs. POST: 85 ± 8 mmHg, P = 0.43), whereas resting MSNA was elevated in POST (PRE: 10 ± 6 vs. POST: 45 ± 16 bursts/100 heart beats, P < 0.0001). Spontaneous sympathetic BRS was enhanced in POST (PRE: -2.0 ± 1.2 vs. POST: -5.2 ± 1.9 bursts/beat/mmHg, P < 0.0005). Sympathetic transduction to MAP was attenuated in POST (time: P < 0.001, group: P < 0.001, interaction: P < 0.01). These data suggest that sympathetic BRS may be enhanced in POST. Consistent with recent hypotheses, enhanced sensitivity of the arterial baroreflex's neural arc may signify a compensatory response to reduced efficiency of the peripheral arterial baroreflex arc (i.e., sympathetic transduction) to preserve BP buffering capacity.NEW & NOTEWORTHY Studies examining sympathetic baroreflex function with aging remain equivocal, with some studies showing an increase, decrease, or no change in sympathetic baroreflex sensitivity (BRS) in older adults compared with younger adults. With aging, women experience unique physiological changes due to menopause that influence autonomic function. For the first time, we show that postmenopausal women exhibit a greater sympathetic BRS compared with young premenopausal women.


Subject(s)
Baroreflex , Blood Pressure , Postmenopause , Sympathetic Nervous System , Humans , Baroreflex/physiology , Female , Sympathetic Nervous System/physiology , Postmenopause/physiology , Middle Aged , Blood Pressure/physiology , Adult , Young Adult , Heart Rate/physiology , Premenopause/physiology , Arterial Pressure/physiology
2.
Physiol Rep ; 10(5): e15209, 2022 03.
Article in English | MEDLINE | ID: mdl-35246960

ABSTRACT

The mechanisms for the benefits of Angiotensin Receptor Neprilysin Inhibition (ARNi) in heart failure patients with reduced ejection fraction (HFrEF) are likely beyond blood pressure reduction. Measures of vascular function such as arterial stiffness and endothelial function are strong prognostic markers of cardiovascular outcomes in HFrEF, yet the impact of ARNi on vascular health remains to be explored. We hypothesized that arterial stiffness and endothelial function would improve after 12 weeks of ARNi in HFrEF. We tested 10 stable HFrEF patients at baseline and following 12 weeks of ARNi [64 ± 9 years, Men/Women: 9/1, left ventricular ejection fraction (EF): 28 ± 6%] as well as 10 stable HFrEF patients that remained on conventional treatment (CON: 60 ± 7 years, Men/Women: 6/4, EF: 31 ± 5%; all p = NS). Arterial stiffness was assessed via carotid-femoral pulse wave velocity (PWV) and endothelial function was assessed via brachial artery flow-mediated dilation (FMD). PWV decreased after 12 weeks of ARNi (9.0 ± 2.1 vs. 7.1 ± 1.2 m/s; p < 0.01) but not in CON (7.0 ± 2.4 vs. 7.5 ± 2.3 m/s; p = 0.35), an effect that remained when controlling for reductions in mean arterial pressure (p < 0.01). FMD increased after 12 weeks of ARNi (2.2 ± 1.9 vs. 5.5 ± 2.1%; p < 0.001) but not in CON (4.8 ± 3.8 vs. 5.4 ± 3.4%; p = 0.34). Baseline PWV (p = 0.06) and FMD (p = 0.07) were not different between groups. These preliminary data suggest that 12 weeks of ARNi therapy may reduce arterial stiffness and improve endothelial function in HFrEF. Thus, the findings from this pilot study suggest that the benefits of ARNi are beyond blood pressure reduction and include improvements in vascular function.


Subject(s)
Heart Failure , Neprilysin , Aminobutyrates/pharmacology , Angiotensins/pharmacology , Female , Heart Failure/drug therapy , Humans , Male , Pilot Projects , Pulse Wave Analysis , Receptors, Angiotensin , Stroke Volume/physiology , Ventricular Function, Left
4.
Med Sci Sports Exerc ; 54(3): 408-416, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34711708

ABSTRACT

INTRODUCTION: Postmenopausal women (PMW) display exaggerated increases in blood pressure (BP) during exercise, yet the mechanism(s) involved remain unclear. Moreover, research on the impact of menopausal changes in estradiol on cardiovascular control during exercise are limited. Herein, we tested the hypothesis that sympathetic responses during exercise are augmented in PMWcompared with young women (YW), and estradiol administration attenuates these responses. METHODS: Muscle sympathetic nerve activity (MSNA) and mean arterial pressure (MAP) were measured in 13 PMW (58 ± 1 yr) and 17 YW (22 ± 1 yr) during 2 min of isometric handgrip. Separately, MSNA and BP responses were measured during isometric handgrip in six PMW (53 ± 1 yr) before and after 1 month of transdermal estradiol (100 µg·d-1). A period of postexercise ischemia (PEI) to isolate muscle metaboreflex activation followed all handgrip bouts. RESULTS: Resting MAP was similar between PMW and YW, whereas MSNA was greater in PMW (23 ± 3 vs 8 ± 1 bursts per minute; P < 0.05). During handgrip, the increases in MSNA (PMW Δ16 ± 2 vs YW Δ6 ± 1 bursts per minute; P < 0.05) and MAP (PMW Δ18 ± 2 vs YW Δ12 ± 2 mm Hg; P < 0.05) were greater in PMW and remained augmented during PEI. Estradiol administration decreased resting MAP but not MSNA in PMW. Moreover, MSNA (PMW (-E2) Δ27 ± 8 bursts per minute versus PMW (+E2) Δ12 ± 5 bursts per minute; P < 0.05) and MAP (Δ31 ± 8 mm Hg vs Δ20 ± 6 mm Hg; P < 0.05) responses during handgrip were attenuated in PMW after estradiol administration. Likewise, MAP responses during PEI were lower after estradiol. CONCLUSIONS: These data suggest that PMW exhibit an exaggerated MSNA and BP response to isometric exercise, due in part to heightened metaboreflex activation. Furthermore, estradiol administration attenuated BP and MSNA responses to exercise in PMW.


Subject(s)
Baroreflex/physiology , Blood Pressure/physiology , Estradiol/administration & dosage , Exercise/physiology , Postmenopause/physiology , Sympathetic Nervous System/physiology , Age Factors , Baroreflex/drug effects , Blood Pressure/drug effects , Estrogens/administration & dosage , Female , Humans , Middle Aged , Postmenopause/drug effects , Sympathetic Nervous System/drug effects , Young Adult
5.
Am J Physiol Heart Circ Physiol ; 321(3): H592-H598, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34415188

ABSTRACT

The endothelin-B (ETB) receptor is a key regulator of vascular endothelial function in women. We have previously shown that the ETB receptor mediates vasodilation in young women, an effect that is lost after menopause. However, the direct impact of changes in estradiol (E2) on ETB receptor function in women remains unclear. Therefore, the purpose of this study was to test the hypothesis that E2 exposure modulates ETB receptor-mediated dilation in young women. Fifteen young women (24 ± 4 yr, 24 ± 3 kg/m2) completed the study. Endogenous sex hormone production was suppressed with daily administration of a gonadotropin-releasing hormone antagonist (GnRHant; Ganirelix) for 10 days; E2 (0.1 mg/day, Vivelle-Dot patch) was added back on days 4-10. We measured vasodilation in the cutaneous microcirculation (microvascular endothelial function) via local heating (42°C) on day 4 (GnRHant) and day 10 (GnRHant + E2) using laser Doppler flowmetry coupled with intradermal microdialysis during perfusions of lactated Ringer's (control) and ETB receptor antagonist (BQ-788, 300 nM). During GnRHant, vasodilatory responses to local heating were enhanced with ETB receptor blockade (control: 83 ± 9 vs. BQ-788: 90 ± 5%CVCmax, P = 0.004). E2 administration improved vasodilation in the control site (GnRHant: 83 ± 9 vs. GnRHant + E2: 89 ± 8%CVCmax, P = 0.036). Furthermore, cutaneous vasodilatory responses during ETB receptor blockade were blunted after E2 administration (control: 89 ± 8 vs. BQ-788: 84 ± 8%CVCmax, P = 0.047). These data demonstrate that ovarian hormones, specifically E2, modulate ETB receptor function and contribute to the regulation of microvascular endothelial function in young women.NEW & NOTEWORTHY The endothelin-B (ETB) receptor mediates vasodilation in young women, an effect lost following menopause. It is unclear whether these alterations are due to aging or changes in estradiol (E2). During endogenous hormone suppression (GnRH antagonist), blockade of ETB receptors enhanced cutaneous microvascular vasodilation. However, during E2 administration, blockade of ETB receptors attenuated vasodilation, indicating that the ETB receptor mediates dilation in the presence of E2. In young women, ETB receptors mediate vasodilation in the presence of E2, an effect that is lost when E2 is suppressed.


Subject(s)
Endothelin B Receptor Antagonists/pharmacology , Estradiol/pharmacology , Estrogens/pharmacology , Receptor, Endothelin B/metabolism , Vasodilation , Adult , Female , Gonadotropin-Releasing Hormone/analogs & derivatives , Gonadotropin-Releasing Hormone/pharmacology , Hormone Antagonists/pharmacology , Humans , Microvessels/drug effects , Microvessels/metabolism , Microvessels/physiology , Oligopeptides/pharmacology , Piperidines/pharmacology , Skin/blood supply
6.
Cardiovasc Res ; 117(1): 212-223, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32129829

ABSTRACT

AIMS: Cyclophilin-D is a well-known regulator of the mitochondrial permeability transition pore (PTP), the main effector of cardiac ischaemia/reperfusion injury. However, the binding of CypD to the PTP is poorly understood. Cysteine 202 (C202) of CypD is highly conserved among species and can undergo redox-sensitive post-translational modifications. We investigated whether C202 regulates the opening of PTP. METHODS AND RESULTS: We developed a knock-in mouse model using CRISPR where CypD-C202 was mutated to a serine (C202S). Infarct size is reduced in CypD-C202S Langendorff perfused hearts compared to wild type (WT). Cardiac mitochondria from CypD-C202S mice also have higher calcium retention capacity compared to WT. Therefore, we hypothesized that oxidation of C202 might target CypD to the PTP. Indeed, isolated cardiac mitochondria subjected to oxidative stress exhibit less binding of CypD-C202S to the proposed PTP component F1F0-ATP-synthase. We previously found C202 to be S-nitrosylated in ischaemic preconditioning. Cysteine residues can also undergo S-acylation, and C202 matched an S-acylation motif. S-acylation of CypD-C202 was assessed using a resin-assisted capture (Acyl-RAC). WT hearts are abundantly S-acylated on CypD C202 under baseline conditions indicating that S-acylation on C202 per se does not lead to PTP opening. CypD C202S knock-in hearts are protected from ischaemia/reperfusion injury suggesting further that lack of CypD S-acylation at C202 is not detrimental (when C is mutated to S) and does not induce PTP opening. However, we find that ischaemia leads to de-acylation of C202 and that calcium overload in isolated mitochondria promotes de-acylation of CypD. Furthermore, a high bolus of calcium in WT cardiac mitochondria displaces CypD from its physiological binding partners and possibly renders it available for interaction with the PTP. CONCLUSIONS: Taken together the data suggest that with ischaemia CypD is de-acylated at C202 allowing the free cysteine residue to undergo oxidation during the first minutes of reperfusion which in turn targets it to the PTP.


Subject(s)
Mitochondria, Heart/metabolism , Mitochondrial Permeability Transition Pore/metabolism , Myocardial Infarction/prevention & control , Myocardial Reperfusion Injury/prevention & control , Myocytes, Cardiac/enzymology , Peptidyl-Prolyl Isomerase F/metabolism , Protein Processing, Post-Translational , Acetylation , Animals , Calcium/metabolism , Peptidyl-Prolyl Isomerase F/genetics , Cysteine , Disease Models, Animal , Isolated Heart Preparation , Mice, Inbred C57BL , Mice, Transgenic , Mitochondria, Heart/pathology , Mutation , Myocardial Infarction/enzymology , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Myocardial Reperfusion Injury/enzymology , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/pathology , Myocytes, Cardiac/pathology , Oxidation-Reduction , Oxidative Stress
SELECTION OF CITATIONS
SEARCH DETAIL