Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Chromosome Res ; 31(3): 21, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37592171

ABSTRACT

Chromosome instability (CIN) is a cancer hallmark that drives tumour heterogeneity, phenotypic adaptation, drug resistance and poor prognosis. High-grade serous ovarian cancer (HGSOC), one of the most chromosomally unstable tumour types, has a 5-year survival rate of only ~30% - largely due to late diagnosis and rapid development of drug resistance, e.g., via CIN-driven ABCB1 translocations. However, CIN is also a cell cycle vulnerability that can be exploited to specifically target tumour cells, illustrated by the success of PARP inhibitors to target homologous recombination deficiency (HRD). However, a lack of appropriate models with ongoing CIN has been a barrier to fully exploiting disease-specific CIN mechanisms. This barrier is now being overcome with the development of patient-derived cell cultures and organoids. In this review, we describe our progress building a Living Biobank of over 120 patient-derived ovarian cancer models (OCMs), predominantly from HGSOC. OCMs are highly purified tumour fractions with extensive proliferative potential that can be analysed at early passage. OCMs have diverse karyotypes, display intra- and inter-patient heterogeneity and mitotic abnormality rates far higher than established cell lines. OCMs encompass a broad-spectrum of HGSOC hallmarks, including a range of p53 alterations and BRCA1/2 mutations, and display drug resistance mechanisms seen in the clinic, e.g., ABCB1 translocations and BRCA2 reversion. OCMs are amenable to functional analysis, drug-sensitivity profiling, and multi-omics, including single-cell next-generation sequencing, and thus represent a platform for delineating HGSOC-specific CIN mechanisms. In turn, our vision is that this understanding will inform the design of new therapeutic strategies.


Subject(s)
Chromosome Disorders , Ovarian Neoplasms , Humans , Female , BRCA1 Protein/genetics , Biological Specimen Banks , BRCA2 Protein , Ovarian Neoplasms/genetics , Translocation, Genetic , Chromosomal Instability
2.
NAR Cancer ; 4(4): zcac036, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36381271

ABSTRACT

High-grade serous ovarian cancer (HGSOC) is an aggressive disease that typically develops drug resistance, thus novel biomarker-driven strategies are required. Targeted therapy focuses on synthetic lethality-pioneered by PARP inhibition of BRCA1/2-mutant disease. Subsequently, targeting the DNA replication stress response (RSR) is of clinical interest. However, further mechanistic insight is required for biomarker discovery, requiring sensitive models that closely recapitulate HGSOC. We describe an optimized proliferation assay that we use to screen 16 patient-derived ovarian cancer models (OCMs) for response to RSR inhibitors (CHK1i, WEE1i, ATRi, PARGi). Despite genomic heterogeneity characteristic of HGSOC, measurement of OCM proliferation was reproducible and reflected intrinsic tumour-cell properties. Surprisingly, RSR targeting drugs were not interchangeable, as sensitivity to the four inhibitors was not correlated. Therefore, to overcome RSR redundancy, we screened the OCMs with all two-, three- and four-drug combinations in a multiple-low-dose strategy. We found that low-dose CHK1i-ATRi had a potent anti-proliferative effect on 15 of the 16 OCMs, and was synergistic with potential to minimise treatment resistance and toxicity. Low-dose ATRi-CHK1i induced replication catastrophe followed by mitotic exit and post-mitotic arrest or death. Therefore, this study demonstrates the potential of the living biobank of OCMs as a drug discovery platform for HGSOC.

3.
R Soc Open Sci ; 8(12): 210854, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34925867

ABSTRACT

Bub1 is a serine/threonine kinase proposed to function centrally in mitotic chromosome alignment and the spindle assembly checkpoint (SAC); however, its role remains controversial. Although it is well documented that Bub1 phosphorylation of Histone 2A at T120 (H2ApT120) recruits Sgo1/2 to kinetochores, the requirement of its kinase activity for chromosome alignment and the SAC is debated. As small-molecule inhibitors are invaluable tools for investigating kinase function, we evaluated two potential Bub1 inhibitors: 2OH-BNPPI and BAY-320. After confirming that both inhibit Bub1 in vitro, we developed a cell-based assay for Bub1 inhibition. We overexpressed a fusion of Histone 2B and Bub1 kinase region, tethering it in proximity to H2A to generate a strong ectopic H2ApT120 signal along chromosome arms. Ectopic signal was effectively inhibited by BAY-320, but not 2OH-BNPP1 at concentrations tested. In addition, only BAY-320 was able to inhibit endogenous Bub1-mediated Sgo1 localization. Preliminary experiments using BAY-320 suggest a minor role for Bub1 kinase activity in chromosome alignment and the SAC; however, BAY-320 may exhibit off-target effects at the concentration required. Thus, 2OH-BNPP1 may not be an effective Bub1 inhibitor in cellulo, and while BAY-320 can inhibit Bub1 in cells, off-target effects highlight the need for improved Bub1 inhibitors.

4.
J Exp Clin Cancer Res ; 40(1): 323, 2021 Oct 16.
Article in English | MEDLINE | ID: mdl-34656146

ABSTRACT

BACKGROUND: Patients with ovarian cancer often present at advanced stage and, following initial treatment success, develop recurrent drug-resistant disease. PARP inhibitors (PARPi) are yielding unprecedented survival benefits for women with BRCA-deficient disease. However, options remain limited for disease that is platinum-resistant and/or has inherent or acquired PARPi-resistance. PARG, the PAR glycohydrolase that counterbalances PARP activity, is an emerging target with potential to selectively kill tumour cells harbouring oncogene-induced DNA replication and metabolic vulnerabilities. Clinical development of PARG inhibitors (PARGi) will however require predictive biomarkers, in turn requiring an understanding of their mode of action. Furthermore, differential sensitivity to PARPi is key for expanding treatment options available for patients. METHODS: A panel of 10 ovarian cancer cell lines and a living biobank of patient-derived ovarian cancer models (OCMs) were screened for PARGi-sensitivity using short- and long-term growth assays. PARGi-sensitivity was characterized using established markers for DNA replication stress, namely replication fibre asymmetry, RPA foci, KAP1 and Chk1 phosphorylation, and pan-nuclear γH2AX, indicating DNA replication catastrophe. Finally, gene expression in sensitive and resistant cells was also examined using NanoString or RNAseq. RESULTS: PARGi sensitivity was identified in both ovarian cancer cell lines and patient-derived OCMs, with sensitivity accompanied by markers of persistent replication stress, and a pre-mitotic cell cycle block. Moreover, DNA replication genes are down-regulated in PARGi-sensitive cell lines consistent with an inherent DNA replication vulnerability. However, DNA replication gene expression did not predict PARGi-sensitivity in OCMs. The subset of patient-derived OCMs that are sensitive to single-agent PARG inhibition, includes models that are PARPi- and/or platinum-resistant, indicating that PARG inhibitors may represent an alternative treatment strategy for women with otherwise limited therapeutic options. CONCLUSIONS: We discover that a subset of ovarian cancers are intrinsically sensitive to pharmacological PARG blockade, including drug-resistant disease, underpinned by a common mechanism of replication catastrophe. We explore the use of a transcript-based biomarker, and provide insight into the design of future clinical trials of PARGi in patients with ovarian cancer. However, our results highlight the complexity of developing a predictive biomarker for PARGi sensitivity.


Subject(s)
Glycoside Hydrolases/metabolism , Ovarian Neoplasms/physiopathology , Cell Line, Tumor , Female , Humans
5.
Dis Model Mech ; 14(11)2021 11 01.
Article in English | MEDLINE | ID: mdl-34569598

ABSTRACT

High-grade serous ovarian cancer (HGSOC) originates in the fallopian tube epithelium and is characterized by ubiquitous TP53 mutation and extensive chromosomal instability (CIN). However, direct causes of CIN, such as mutations in DNA replication and mitosis genes, are rare in HGSOC. We therefore asked whether oncogenic mutations that are common in HGSOC can indirectly drive CIN in non-transformed human fallopian tube epithelial cells. To model homologous recombination deficient HGSOC, we sequentially mutated TP53 and BRCA1 then overexpressed MYC. Loss of p53 function alone was sufficient to drive the emergence of subclonal karyotype alterations. TP53 mutation also led to global gene expression changes, influencing modules involved in cell cycle commitment, DNA replication, G2/M checkpoint control and mitotic spindle function. Both transcriptional deregulation and karyotype diversity were exacerbated by loss of BRCA1 function, with whole-genome doubling events observed in independent p53/BRCA1-deficient lineages. Thus, our observations indicate that loss of the key tumour suppressor TP53 is sufficient to deregulate multiple cell cycle control networks and thereby initiate CIN in pre-malignant fallopian tube epithelial cells. This article has an associated First Person interview with the first author of the paper.


Subject(s)
Cystadenocarcinoma, Serous , Ovarian Neoplasms , Chromosomal Instability , Cystadenocarcinoma, Serous/genetics , Cystadenocarcinoma, Serous/metabolism , Cystadenocarcinoma, Serous/pathology , Epithelial Cells/metabolism , Fallopian Tubes/metabolism , Fallopian Tubes/pathology , Female , Humans , Mutation/genetics , Ovarian Neoplasms/pathology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
6.
Genome Med ; 13(1): 140, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34470661

ABSTRACT

BACKGROUND: Epithelial ovarian cancer (OC) is a heterogenous disease consisting of five major histologically distinct subtypes: high-grade serous (HGSOC), low-grade serous (LGSOC), endometrioid (ENOC), clear cell (CCOC) and mucinous (MOC). Although HGSOC is the most prevalent subtype, representing 70-80% of cases, a 2013 landmark study by Domcke et al. found that the most frequently used OC cell lines are not molecularly representative of this subtype. This raises the question, if not HGSOC, from which subtype do these cell lines derive? Indeed, non-HGSOC subtypes often respond poorly to chemotherapy; therefore, representative models are imperative for developing new targeted therapeutics. METHODS: Non-negative matrix factorisation (NMF) was applied to transcriptomic data from 44 OC cell lines in the Cancer Cell Line Encyclopedia, assessing the quality of clustering into 2-10 groups. Epithelial OC subtypes were assigned to cell lines optimally clustered into five transcriptionally distinct classes, confirmed by integration with subtype-specific mutations. A transcriptional subtype classifier was then developed by trialling three machine learning algorithms using subtype-specific metagenes defined by NMF. The ability of classifiers to predict subtype was tested using RNA sequencing of a living biobank of patient-derived OC models. RESULTS: Application of NMF optimally clustered the 44 cell lines into five transcriptionally distinct groups. Close inspection of orthogonal datasets revealed this five-cluster delineation corresponds to the five major OC subtypes. This NMF-based classification validates the Domcke et al. analysis, in identifying lines most representative of HGSOC, and additionally identifies models representing the four other subtypes. However, NMF of the cell lines into two clusters did not align with the dualistic model of OC and suggests this classification is an oversimplification. Subtype designation of patient-derived models by a random forest transcriptional classifier aligned with prior diagnosis in 76% of unambiguous cases. In cases where there was disagreement, this often indicated potential alternative diagnosis, supported by a review of histological, molecular and clinical features. CONCLUSIONS: This robust classification informs the selection of the most appropriate models for all five histotypes. Following further refinement on larger training cohorts, the transcriptional classification may represent a useful tool to support the classification of new model systems of OC subtypes.


Subject(s)
Cell Line, Tumor , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Transcriptome , Algorithms , Benzyl Alcohols , Computational Biology/methods , Databases, Genetic , Female , Genetic Background , High-Throughput Nucleotide Sequencing , Humans , Machine Learning , Mutation , Neoplasm Grading
7.
Biochem Soc Trans ; 38(4): 1110-5, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20659013

ABSTRACT

The NineTeen Complex (NTC) of proteins associates with the spliceosome during pre-mRNA splicing and is essential for both steps of intron removal. The NTC and other NTC-associated proteins are recruited to the spliceosome where they participate in regulating the formation and progression of essential spliceosome conformations required for the two steps of splicing. It is now clear that the NTC is an integral component of active spliceosomes from yeast to humans and provides essential support for the spliceosomal snRNPs (small nuclear ribonucleoproteins). In the present article, we discuss the identification and characterization of the yeast NTC and review recent work in yeast that supports the essential role for this complex in the regulation and fidelity of splicing.


Subject(s)
RNA Precursors/metabolism , RNA Splicing/physiology , Saccharomyces cerevisiae Proteins/physiology , Spliceosomes/chemistry , Spliceosomes/physiology , Humans , Models, Biological , Molecular Conformation , RNA Splicing Factors , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Spliceosomes/metabolism
8.
Nucleic Acids Res ; 37(13): 4205-17, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19435883

ABSTRACT

Intron removal during pre-messenger RNA (pre-mRNA) splicing involves arrangement of snRNAs into conformations that promote the two catalytic steps. The Prp19 complex [nineteen complex (NTC)] can specify U5 and U6 snRNA interactions with pre-mRNA during spliceosome activation. A candidate for linking the NTC to the snRNAs is the NTC protein Cwc2, which contains motifs known to bind RNA, a zinc finger and RNA recognition motif (RRM). In yeast cells mutation of either the zinc finger or RRM destabilize Cwc2 and are lethal. Yeast cells depleted of Cwc2 accumulate pre-mRNA and display reduced levels of U1, U4, U5 and U6 snRNAs. Cwc2 depletion also reduces U4/U6 snRNA complex levels, as found with depletion of other NTC proteins, but without increase in free U4. Purified Cwc2 displays general RNA binding properties and can bind both snRNAs and pre-mRNA in vitro. A Cwc2 RRM fragment alone can bind RNA but with reduced efficiency. Under splicing conditions Cwc2 can associate with U2, U5 and U6 snRNAs, but can only be crosslinked directly to the U6 snRNA. Cwc2 associates with U6 both before and after the first step of splicing. We propose that Cwc2 links the NTC to the spliceosome during pre-mRNA splicing through the U6 snRNA.


Subject(s)
RNA Precursors/metabolism , RNA Splicing , RNA, Messenger/metabolism , RNA, Small Nuclear/metabolism , RNA-Binding Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Spliceosomes/metabolism , Amino Acid Motifs , Amino Acid Sequence , Binding Sites , Gene Expression Regulation, Fungal , Molecular Sequence Data , Mutation , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Zinc Fingers
9.
Nucleic Acids Res ; 36(3): 814-25, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18084028

ABSTRACT

Activation of pre-messenger RNA (pre-mRNA) splicing requires 5' splice site recognition by U1 small nuclear RNA (snRNA), which is replaced by U5 and U6 snRNA. Here we use crosslinking to investigate snRNA interactions with the 5' exon adjacent to the 5' splice site, prior to the first step of splicing. U1 snRNA was found to interact with four different 5' exon positions using one specific sequence adjacent to U1 snRNA helix 1. This novel interaction of U1 we propose occurs before U1-5' splice site base pairing. In contrast, U5 snRNA interactions with the 5' exon of the pre-mRNA progressively shift towards the 5' end of U5 loop 1 as the crosslinking group is placed further from the 5' splice site, with only interactions closest to the 5' splice site persisting to the 5' exon intermediate and the second step of splicing. A novel yeast U2 snRNA interaction with the 5' exon was also identified, which is ATP dependent and requires U2-branchpoint interaction. This study provides insight into the nature and timing of snRNA interactions required for 5' splice site recognition prior to the first step of pre-mRNA splicing.


Subject(s)
RNA Precursors/chemistry , RNA Splice Sites , RNA Splicing , RNA, Messenger/chemistry , RNA, Small Nuclear/chemistry , Yeasts/genetics , Adenosine Triphosphate/metabolism , Binding Sites , Exons , Fungal Proteins/metabolism , RNA Precursors/metabolism , RNA, Messenger/metabolism , RNA, Small Nuclear/metabolism , Spliceosomes/metabolism , Yeasts/metabolism
10.
EMBO J ; 25(16): 3813-22, 2006 Aug 23.
Article in English | MEDLINE | ID: mdl-16888626

ABSTRACT

The U2 and U6 snRNAs contribute to the catalysis of intron removal while U5 snRNA loop 1 holds the exons for ligation during pre-mRNA splicing. It is unclear how different exons are positioned precisely with U5 loop 1. Here, we investigate the role of U2 and U6 in positioning the exons with U5 loop 1. Reconstitution in vitro of spliceosomes with mutations in U2 allows U5-pre-mRNA interactions before the first step of splicing. However, insertion in U2 helix Ia disrupts U5-exon interactions with the intron lariat-3' exon splicing intermediate. Conversely, U6 helix Ia insertions prevent U5-pre-mRNA interactions before the first step of splicing. In vivo, synthetic lethal interactions have been identified between U2 insertion and U5 loop 1 insertion mutants. Additionally, analysis of U2 insertion mutants in vivo reveals that they influence the efficiency, but not the accuracy of splicing. Our data suggest that U2 aligns the exons with U5 loop 1 for ligation during the second step of pre-mRNA splicing.


Subject(s)
Exons , RNA Precursors/metabolism , RNA Splicing , RNA, Small Nuclear/metabolism , Base Sequence , Molecular Sequence Data , Mutation , Nucleic Acid Conformation , RNA Precursors/genetics , RNA, Small Nuclear/genetics , Yeasts/genetics , Yeasts/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...