Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
1.
Nature ; 629(8012): 543-554, 2024 May.
Article in English | MEDLINE | ID: mdl-38750233

ABSTRACT

Metastasis is a multistep process by which cancer cells break away from their original location and spread to distant organs, and is responsible for the vast majority of cancer-related deaths. Preventing early metastatic dissemination would revolutionize the ability to fight cancer. Unfortunately, the relatively poor understanding of the molecular underpinnings of metastasis has hampered the development of effective anti-metastatic drugs. Although it is now accepted that disseminating tumour cells need to acquire multiple competencies to face the many obstacles they encounter before reaching their metastatic site(s), whether these competencies are acquired through an accumulation of metastasis-specific genetic alterations and/or non-genetic events is often debated. Here we review a growing body of literature highlighting the importance of both genetic and non-genetic reprogramming events during the metastatic cascade, and discuss how genetic and non-genetic processes act in concert to confer metastatic competencies. We also describe how recent technological advances, and in particular the advent of single-cell multi-omics and barcoding approaches, will help to better elucidate the cross-talk between genetic and non-genetic mechanisms of metastasis and ultimately inform innovative paths for the early detection and interception of this lethal process.


Subject(s)
Neoplasm Metastasis , Neoplasms , Humans , Neoplasm Metastasis/genetics , Neoplasms/genetics , Neoplasms/pathology , Animals , Single-Cell Analysis
2.
Cancer Discov ; 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38581685

ABSTRACT

Understanding the role of the tumour microenvironment (TME) in lung cancer is critical to improving patient outcome. We identified four histology-independent archetype TMEs in treatment-naive early-stage lung cancer using imaging mass cytometry in the TRACERx study (n=81 patients/198 samples/2.3million cells). In immune-hot adenocarcinomas, spatial niches of T cells and macrophages increased with clonal neoantigen burden, whereas such an increase was observed for niches of plasma and B cells in immune-excluded squamous cell carcinomas (LUSC). Immune-low TMEs were associated with fibroblast barriers to immune infiltration. The fourth archetype, characterised by sparse lymphocytes and high tumour-associated neutrophil (TAN) infiltration, had tumour cells spatially separated from vasculature and exhibited low spatial intratumour heterogeneity. TAN-High LUSC had frequent PIK3CA mutations. TAN-High tumours harboured recently expanded and metastasis-seeding subclones and had a shorter disease-free survival independent of stage. These findings delineate genomic, immune and physical barriers to immune surveillance and implicate neutrophil-rich TMEs in metastasis.

3.
Cancer Cell ; 42(2): 209-224.e9, 2024 02 12.
Article in English | MEDLINE | ID: mdl-38215748

ABSTRACT

Although immunotherapy with PD-(L)1 blockade is routine for lung cancer, little is known about acquired resistance. Among 1,201 patients with non-small cell lung cancer (NSCLC) treated with PD-(L)1 blockade, acquired resistance is common, occurring in >60% of initial responders. Acquired resistance shows differential expression of inflammation and interferon (IFN) signaling. Relapsed tumors can be separated by upregulated or stable expression of IFNγ response genes. Upregulation of IFNγ response genes is associated with putative routes of resistance characterized by signatures of persistent IFN signaling, immune dysfunction, and mutations in antigen presentation genes which can be recapitulated in multiple murine models of acquired resistance to PD-(L)1 blockade after in vitro IFNγ treatment. Acquired resistance to PD-(L)1 blockade in NSCLC is associated with an ongoing, but altered IFN response. The persistently inflamed, rather than excluded or deserted, tumor microenvironment of acquired resistance may inform therapeutic strategies to effectively reprogram and reverse acquired resistance.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Animals , Mice , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Signal Transduction , Immunotherapy , Antigen Presentation , B7-H1 Antigen/metabolism , Tumor Microenvironment
4.
Nat Protoc ; 19(1): 159-183, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38017136

ABSTRACT

Intratumor heterogeneity provides the fuel for the evolution and selection of subclonal tumor cell populations. However, accurate inference of tumor subclonal architecture and reconstruction of tumor evolutionary histories from bulk DNA sequencing data remains challenging. Frequently, sequencing and alignment artifacts are not fully filtered out from cancer somatic mutations, and errors in the identification of copy number alterations or complex evolutionary events (e.g., mutation losses) affect the estimated cellular prevalence of mutations. Together, such errors propagate into the analysis of mutation clustering and phylogenetic reconstruction. In this Protocol, we present a new computational framework, CONIPHER (COrrecting Noise In PHylogenetic Evaluation and Reconstruction), that accurately infers subclonal structure and phylogenetic relationships from multisample tumor sequencing, accounting for both copy number alterations and mutation errors. CONIPHER has been used to reconstruct subclonal architecture and tumor phylogeny from multisample tumors with high-depth whole-exome sequencing from the TRACERx421 dataset, as well as matched primary-metastatic cases. CONIPHER outperforms similar methods on simulated datasets, and in particular scales to a large number of tumor samples and clones, while completing in under 1.5 h on average. CONIPHER enables automated phylogenetic analysis that can be effectively applied to large sequencing datasets generated with different technologies. CONIPHER can be run with a basic knowledge of bioinformatics and R and bash scripting languages.


Subject(s)
Algorithms , Neoplasms , Humans , Phylogeny , Neoplasms/genetics , Neoplasms/pathology , Computational Biology/methods , Sequence Analysis, DNA , Mutation
5.
PLoS Comput Biol ; 19(10): e1011379, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37871126

ABSTRACT

Most computational methods that infer somatic copy number alterations (SCNAs) from bulk sequencing of DNA analyse tumour samples individually. However, the sequencing of multiple tumour samples from a patient's disease is an increasingly common practice. We introduce Refphase, an algorithm that leverages this multi-sampling approach to infer haplotype-specific copy numbers through multi-sample phasing. We demonstrate Refphase's ability to infer haplotype-specific SCNAs and characterise their intra-tumour heterogeneity, to uncover previously undetected allelic imbalance in low purity samples, and to identify parallel evolution in the context of whole genome doubling in a pan-cancer cohort of 336 samples from 99 tumours.


Subject(s)
DNA Copy Number Variations , Neoplasms , Humans , DNA Copy Number Variations/genetics , Haplotypes/genetics , Neoplasms/genetics , Neoplasms/pathology , Algorithms
6.
Cancer Cell ; 41(9): 1548-1550, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37595585

ABSTRACT

By integrating scRNA-seq datasets across 77 studies and 24 cancer types, in Nature, Gavish et al. uncover recurrent patterns of gene expression that explain a significant proportion of transcriptomic heterogeneity observed in cancer and explore their functional significance.


Subject(s)
Neoplasms , Humans , Neoplasms/genetics , Gene Expression Profiling , Transcriptome
7.
Front Oncol ; 13: 1156743, 2023.
Article in English | MEDLINE | ID: mdl-37342197

ABSTRACT

Background: Patient-derived xenograft (PDX) models involve the engraftment of tumour tissue in immunocompromised mice and represent an important pre-clinical oncology research method. A limitation of non-small cell lung cancer (NSCLC) PDX model derivation in NOD-scid IL2Rgammanull (NSG) mice is that a subset of initial engraftments are of lymphocytic, rather than tumour origin. Methods: The immunophenotype of lymphoproliferations arising in the lung TRACERx PDX pipeline were characterised. To present the histology data herein, we developed a Python-based tool for generating patient-level pathology overview figures from whole-slide image files; PATHOverview is available on GitHub (https://github.com/EpiCENTR-Lab/PATHOverview). Results: Lymphoproliferations occurred in 17.8% of lung adenocarcinoma and 10% of lung squamous cell carcinoma transplantations, despite none of these patients having a prior or subsequent clinical history of lymphoproliferative disease. Lymphoproliferations were predominantly human CD20+ B cells and had the immunophenotype expected for post-transplantation diffuse large B cell lymphoma with plasma cell features. All lymphoproliferations expressed Epstein-Barr-encoded RNAs (EBER). Analysis of immunoglobulin light chain gene rearrangements in three tumours where multiple tumour regions had resulted in lymphoproliferations suggested that each had independent clonal origins. Discussion: Overall, these data suggest that B cell clones with lymphoproliferative potential are present within primary NSCLC tumours, and that these are under continuous immune surveillance. Since these cells can be expanded following transplantation into NSG mice, our data highlight the value of quality control measures to identify lymphoproliferations within xenograft pipelines and support the incorporation of strategies to minimise lymphoproliferations during the early stages of xenograft establishment pipelines.

8.
Nat Commun ; 14(1): 2176, 2023 04 20.
Article in English | MEDLINE | ID: mdl-37080969

ABSTRACT

Amyotrophic Lateral Sclerosis (ALS) causes motor neuron degeneration, with 97% of cases exhibiting TDP-43 proteinopathy. Elucidating pathomechanisms has been hampered by disease heterogeneity and difficulties accessing motor neurons. Human induced pluripotent stem cell-derived motor neurons (iPSMNs) offer a solution; however, studies have typically been limited to underpowered cohorts. Here, we present a comprehensive compendium of 429 iPSMNs from 15 datasets, and 271 post-mortem spinal cord samples. Using reproducible bioinformatic workflows, we identify robust upregulation of p53 signalling in ALS in both iPSMNs and post-mortem spinal cord. p53 activation is greatest with C9orf72 repeat expansions but is weakest with SOD1 and FUS mutations. TDP-43 depletion potentiates p53 activation in both post-mortem neuronal nuclei and cell culture, thereby functionally linking p53 activation with TDP-43 depletion. ALS iPSMNs and post-mortem tissue display enrichment of splicing alterations, somatic mutations, and gene fusions, possibly contributing to the DNA damage response.


Subject(s)
Amyotrophic Lateral Sclerosis , DNA-Binding Proteins , Genomic Instability , Transcriptome , Alternative Splicing/genetics , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Cadaver , Cohort Studies , Datasets as Topic , DNA Damage , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/genetics , Gene Fusion , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Motor Neurons/cytology , Motor Neurons/metabolism , Mutation , Spinal Cord/metabolism , Transcriptome/genetics , Humans
9.
Genome Med ; 15(1): 27, 2023 04 20.
Article in English | MEDLINE | ID: mdl-37081523

ABSTRACT

BACKGROUND: Liquid biopsies and the dynamic tracking of somatic mutations within circulating tumour DNA (ctDNA) can provide insight into the dynamics of cancer evolution and the intra-tumour heterogeneity that fuels treatment resistance. However, identifying and tracking dynamic changes in somatic copy number alterations (SCNAs), which have been associated with poor outcome and metastasis, using ctDNA is challenging. Pancreatic adenocarcinoma is a disease which has been considered to harbour early punctuated events in its evolution, leading to an early fitness peak, with minimal further subclonal evolution. METHODS: To interrogate the role of SCNAs in pancreatic adenocarcinoma cancer evolution, we applied whole-exome sequencing of 55 longitudinal cell-free DNA (cfDNA) samples taken from 24 patients (including 8 from whom a patient-derived xenograft (PDX) was derived) with metastatic disease prospectively recruited into a clinical trial. We developed a method, Aneuploidy in Circulating Tumour DNA (ACT-Discover), that leverages haplotype phasing of paired tumour biopsies or PDXs to identify SCNAs in cfDNA with greater sensitivity. RESULTS: SCNAs were observed within 28 of 47 evaluable cfDNA samples. Of these events, 30% could only be identified by harnessing the haplotype-aware approach leveraged in ACT-Discover. The exceptional purity of PDX tumours enabled near-complete phasing of genomic regions in allelic imbalance, highlighting an important auxiliary function of PDXs. Finally, although the classical model of pancreatic cancer evolution emphasises the importance of early, homogenous somatic events as a key requirement for cancer development, ACT-Discover identified substantial heterogeneity of SCNAs, including parallel focal and arm-level events, affecting different parental alleles within individual tumours. Indeed, ongoing acquisition of SCNAs was identified within tumours throughout the disease course, including within an untreated metastatic tumour. CONCLUSIONS: This work demonstrates the power of haplotype phasing to study genomic variation in cfDNA samples and reveals undiscovered intra-tumour heterogeneity with important scientific and clinical implications. Implementation of ACT-Discover could lead to important insights from existing cohorts or underpin future prospective studies seeking to characterise the landscape of tumour evolution through liquid biopsy.


Subject(s)
Adenocarcinoma , Cell-Free Nucleic Acids , Circulating Tumor DNA , Pancreatic Neoplasms , Humans , Circulating Tumor DNA/genetics , Adenocarcinoma/genetics , Pancreatic Neoplasms/genetics , Prospective Studies , Karyotype , Mutation , Biomarkers, Tumor/genetics
10.
Nat Med ; 29(4): 833-845, 2023 04.
Article in English | MEDLINE | ID: mdl-37045996

ABSTRACT

Lung adenocarcinomas (LUADs) display a broad histological spectrum from low-grade lepidic tumors through to mid-grade acinar and papillary and high-grade solid, cribriform and micropapillary tumors. How morphology reflects tumor evolution and disease progression is poorly understood. Whole-exome sequencing data generated from 805 primary tumor regions and 121 paired metastatic samples across 248 LUADs from the TRACERx 421 cohort, together with RNA-sequencing data from 463 primary tumor regions, were integrated with detailed whole-tumor and regional histopathological analysis. Tumors with predominantly high-grade patterns showed increased chromosomal complexity, with higher burden of loss of heterozygosity and subclonal somatic copy number alterations. Individual regions in predominantly high-grade pattern tumors exhibited higher proliferation and lower clonal diversity, potentially reflecting large recent subclonal expansions. Co-occurrence of truncal loss of chromosomes 3p and 3q was enriched in predominantly low-/mid-grade tumors, while purely undifferentiated solid-pattern tumors had a higher frequency of truncal arm or focal 3q gains and SMARCA4 gene alterations compared with mixed-pattern tumors with a solid component, suggesting distinct evolutionary trajectories. Clonal evolution analysis revealed that tumors tend to evolve toward higher-grade patterns. The presence of micropapillary pattern and 'tumor spread through air spaces' were associated with intrathoracic recurrence, in contrast to the presence of solid/cribriform patterns, necrosis and preoperative circulating tumor DNA detection, which were associated with extra-thoracic recurrence. These data provide insights into the relationship between LUAD morphology, the underlying evolutionary genomic landscape, and clinical and anatomical relapse risk.


Subject(s)
Adenocarcinoma of Lung , Adenocarcinoma , Lung Neoplasms , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Neoplasm Recurrence, Local/pathology , Adenocarcinoma of Lung/genetics , Disease Progression , DNA Helicases , Nuclear Proteins , Transcription Factors
11.
Nat Med ; 29(4): 846-858, 2023 04.
Article in English | MEDLINE | ID: mdl-37045997

ABSTRACT

Cancer-associated cachexia (CAC) is a major contributor to morbidity and mortality in individuals with non-small cell lung cancer. Key features of CAC include alterations in body composition and body weight. Here, we explore the association between body composition and body weight with survival and delineate potential biological processes and mediators that contribute to the development of CAC. Computed tomography-based body composition analysis of 651 individuals in the TRACERx (TRAcking non-small cell lung Cancer Evolution through therapy (Rx)) study suggested that individuals in the bottom 20th percentile of the distribution of skeletal muscle or adipose tissue area at the time of lung cancer diagnosis, had significantly shorter lung cancer-specific survival and overall survival. This finding was validated in 420 individuals in the independent Boston Lung Cancer Study. Individuals classified as having developed CAC according to one or more features at relapse encompassing loss of adipose or muscle tissue, or body mass index-adjusted weight loss were found to have distinct tumor genomic and transcriptomic profiles compared with individuals who did not develop such features. Primary non-small cell lung cancers from individuals who developed CAC were characterized by enrichment of inflammatory signaling and epithelial-mesenchymal transitional pathways, and differentially expressed genes upregulated in these tumors included cancer-testis antigen MAGEA6 and matrix metalloproteinases, such as ADAMTS3. In an exploratory proteomic analysis of circulating putative mediators of cachexia performed in a subset of 110 individuals from TRACERx, a significant association between circulating GDF15 and loss of body weight, skeletal muscle and adipose tissue was identified at relapse, supporting the potential therapeutic relevance of targeting GDF15 in the management of CAC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Male , Humans , Cachexia/complications , Lung Neoplasms/pathology , Carcinoma, Non-Small-Cell Lung/pathology , Proteomics , Neoplasm Recurrence, Local/pathology , Body Composition , Body Weight , Muscle, Skeletal/metabolism , Antigens, Neoplasm/metabolism , Neoplasm Proteins
12.
Nature ; 616(7957): 543-552, 2023 04.
Article in English | MEDLINE | ID: mdl-37046093

ABSTRACT

Intratumour heterogeneity (ITH) fuels lung cancer evolution, which leads to immune evasion and resistance to therapy1. Here, using paired whole-exome and RNA sequencing data, we investigate intratumour transcriptomic diversity in 354 non-small cell lung cancer tumours from 347 out of the first 421 patients prospectively recruited into the TRACERx study2,3. Analyses of 947 tumour regions, representing both primary and metastatic disease, alongside 96 tumour-adjacent normal tissue samples implicate the transcriptome as a major source of phenotypic variation. Gene expression levels and ITH relate to patterns of positive and negative selection during tumour evolution. We observe frequent copy number-independent allele-specific expression that is linked to epigenomic dysfunction. Allele-specific expression can also result in genomic-transcriptomic parallel evolution, which converges on cancer gene disruption. We extract signatures of RNA single-base substitutions and link their aetiology to the activity of the RNA-editing enzymes ADAR and APOBEC3A, thereby revealing otherwise undetected ongoing APOBEC activity in tumours. Characterizing the transcriptomes of primary-metastatic tumour pairs, we combine multiple machine-learning approaches that leverage genomic and transcriptomic variables to link metastasis-seeding potential to the evolutionary context of mutations and increased proliferation within primary tumour regions. These results highlight the interplay between the genome and transcriptome in influencing ITH, lung cancer evolution and metastasis.


Subject(s)
Evolution, Molecular , Genome, Human , Lung Neoplasms , Neoplasm Metastasis , Transcriptome , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Genomics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mutation , Neoplasm Metastasis/genetics , Transcriptome/genetics , Alleles , Machine Learning , Genome, Human/genetics
13.
Nature ; 616(7957): 563-573, 2023 04.
Article in English | MEDLINE | ID: mdl-37046094

ABSTRACT

B cells are frequently found in the margins of solid tumours as organized follicles in ectopic lymphoid organs called tertiary lymphoid structures (TLS)1,2. Although TLS have been found to correlate with improved patient survival and response to immune checkpoint blockade (ICB), the underlying mechanisms of this association remain elusive1,2. Here we investigate lung-resident B cell responses in patients from the TRACERx 421 (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy) and other lung cancer cohorts, and in a recently established immunogenic mouse model for lung adenocarcinoma3. We find that both human and mouse lung adenocarcinomas elicit local germinal centre responses and tumour-binding antibodies, and further identify endogenous retrovirus (ERV) envelope glycoproteins as a dominant anti-tumour antibody target. ERV-targeting B cell responses are amplified by ICB in both humans and mice, and by targeted inhibition of KRAS(G12C) in the mouse model. ERV-reactive antibodies exert anti-tumour activity that extends survival in the mouse model, and ERV expression predicts the outcome of ICB in human lung adenocarcinoma. Finally, we find that effective immunotherapy in the mouse model requires CXCL13-dependent TLS formation. Conversely, therapeutic CXCL13 treatment potentiates anti-tumour immunity and synergizes with ICB. Our findings provide a possible mechanistic basis for the association of TLS with immunotherapy response.


Subject(s)
Endogenous Retroviruses , Immunotherapy , Lung Neoplasms , Animals , Humans , Mice , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/therapy , Adenocarcinoma of Lung/virology , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/therapy , Carcinoma, Non-Small-Cell Lung/virology , Disease Models, Animal , Endogenous Retroviruses/immunology , Immunotherapy/methods , Lung/immunology , Lung Neoplasms/immunology , Lung Neoplasms/therapy , Lung Neoplasms/virology , Tumor Microenvironment , B-Lymphocytes/immunology , Cohort Studies , Antibodies/immunology , Antibodies/therapeutic use
14.
Cancer Discov ; 13(6): 1364-1385, 2023 06 02.
Article in English | MEDLINE | ID: mdl-36977461

ABSTRACT

Understanding the evolutionary pathways to metastasis and resistance to immune-checkpoint inhibitors (ICI) in melanoma is critical for improving outcomes. Here, we present the most comprehensive intrapatient metastatic melanoma dataset assembled to date as part of the Posthumous Evaluation of Advanced Cancer Environment (PEACE) research autopsy program, including 222 exome sequencing, 493 panel-sequenced, 161 RNA sequencing, and 22 single-cell whole-genome sequencing samples from 14 ICI-treated patients. We observed frequent whole-genome doubling and widespread loss of heterozygosity, often involving antigen-presentation machinery. We found KIT extrachromosomal DNA may have contributed to the lack of response to KIT inhibitors of a KIT-driven melanoma. At the lesion-level, MYC amplifications were enriched in ICI nonresponders. Single-cell sequencing revealed polyclonal seeding of metastases originating from clones with different ploidy in one patient. Finally, we observed that brain metastases that diverged early in molecular evolution emerge late in disease. Overall, our study illustrates the diverse evolutionary landscape of advanced melanoma. SIGNIFICANCE: Despite treatment advances, melanoma remains a deadly disease at stage IV. Through research autopsy and dense sampling of metastases combined with extensive multiomic profiling, our study elucidates the many mechanisms that melanomas use to evade treatment and the immune system, whether through mutations, widespread copy-number alterations, or extrachromosomal DNA. See related commentary by Shain, p. 1294. This article is highlighted in the In This Issue feature, p. 1275.


Subject(s)
Brain Neoplasms , Melanoma , Humans , Melanoma/pathology , Mutation , Evolution, Molecular , DNA
15.
Immunity ; 56(3): 472-474, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36921573

ABSTRACT

Tumor mutation burden (TMB) is a proven, but imperfect, immune checkpoint blockade (ICB) response-predictor. Recently in Nature Medicine, Niknafs et al. demonstrate that persistent mutation burden, a subset of TMB, is an improved metric to predict patient ICB therapy outcome.


Subject(s)
B7-H1 Antigen , Immunotherapy , Humans , Mutation , B7-H1 Antigen/genetics , Biomarkers, Tumor/genetics , Tumor Burden
16.
Cancer Res ; 83(9): 1410-1425, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36853169

ABSTRACT

Beyond tertiary lymphoid structures, a significant number of immune-rich areas without germinal center-like structures are observed in non-small cell lung cancer. Here, we integrated transcriptomic data and digital pathology images to study the prognostic implications, spatial locations, and constitution of immune rich areas (immune hotspots) in a cohort of 935 patients with lung cancer from The Cancer Genome Atlas. A high intratumoral immune hotspot score, which measures the proportion of immune hotspots interfacing with tumor islands, was correlated with poor overall survival in lung squamous cell carcinoma but not in lung adenocarcinoma. Lung squamous cell carcinomas with high intratumoral immune hotspot scores were characterized by consistent upregulation of B-cell signatures. Spatial statistical analyses conducted on serial multiplex IHC slides further revealed that only 4.87% of peritumoral immune hotspots and 0.26% of intratumoral immune hotspots were tertiary lymphoid structures. Significantly lower densities of CD20+CXCR5+ and CD79b+ B cells and less diverse immune cell interactions were found in intratumoral immune hotspots compared with peritumoral immune hotspots. Furthermore, there was a negative correlation between the percentages of CD8+ T cells and T regulatory cells in intratumoral but not in peritumoral immune hotspots, with tertiary lymphoid structures excluded. These findings suggest that the intratumoral immune hotspots reflect an immunosuppressive niche compared with peritumoral immune hotspots, independent of the distribution of tertiary lymphoid structures. A balance toward increased intratumoral immune hotspots is indicative of a compromised antitumor immune response and poor outcome in lung squamous cell carcinoma. SIGNIFICANCE: Intratumoral immune hotspots beyond tertiary lymphoid structures reflect an immunosuppressive microenvironment, different from peritumoral immune hotspots, warranting further study in the context of immunotherapies.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Carcinoma, Squamous Cell , Lung Neoplasms , Tertiary Lymphoid Structures , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , Prognosis , Carcinoma, Squamous Cell/pathology , Lung/pathology , Tumor Microenvironment
17.
Nat Commun ; 14(1): 892, 2023 02 17.
Article in English | MEDLINE | ID: mdl-36807354

ABSTRACT

Intratumoral heterogeneity (ITH) has been linked to decreased efficacy of clinical treatments. However, although genomic ITH has been characterized in genetic, transcriptomic and epigenetic alterations are hallmarks of esophageal squamous cell carcinoma (ESCC), the extent to which these are heterogeneous in ESCC has not been explored in a unified framework. Further, the extent to which tumor-infiltrated T lymphocytes are directed against cancer cells, but how the immune infiltration acts as a selective force to shape the clonal evolution of ESCC is unclear. In this study, we perform multi-omic sequencing on 186 samples from 36 primary ESCC patients. Through multi-omics analyses, it is discovered that genomic, epigenomic, and transcriptomic ITH are underpinned by ongoing chromosomal instability. Based on the RNA-seq data, we observe diverse levels of immune infiltrate across different tumor sites from the same tumor. We reveal genetic mechanisms of neoantigen evasion under distinct selection pressure from the diverse immune microenvironment. Overall, our work offers an avenue of dissecting the complex contribution of the multi-omics level to the ITH in ESCC and thereby enhances the development of clinical therapy.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Neoplasms/genetics , Multiomics , Transcriptome , Gene Expression Profiling , Tumor Microenvironment
18.
Genome Med ; 14(1): 137, 2022 12 07.
Article in English | MEDLINE | ID: mdl-36476325

ABSTRACT

Cancer development is an evolutionary process. A key selection pressure is exerted by therapy, one of the few players in cancer evolution that can be controlled. As such, an understanding of how treatment acts to sculpt the tumour and its microenvironment and how this influences a tumour's subsequent evolutionary trajectory is critical. In this review, we examine cancer evolution and intra-tumour heterogeneity in the context of therapy. We focus on how radiotherapy, chemotherapy and immunotherapy shape both tumour development and the environment in which tumours evolve and how resistance can develop or be selected for during treatment.


Subject(s)
Immune System , Neoplasms , Humans , Neoplasms/genetics , Neoplasms/therapy , Tumor Microenvironment
19.
Cancers (Basel) ; 14(23)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36497297

ABSTRACT

Cancer metastasis is the lethal developmental step in cancer, responsible for the majority of cancer deaths. To metastasise, cancer cells must acquire the ability to disseminate systemically and to escape an activated immune response. Here, we endeavoured to investigate if metastatic dissemination reflects acquisition of genomic traits that are selected for. We acquired mutation and copy number data from 8332 tumours representing 19 cancer types acquired from The Cancer Genome Atlas and the Hartwig Medical Foundation. A total of 827,344 non-synonymous mutations across 8332 tumour samples representing 19 cancer types were timed as early or late relative to copy number alterations, and potential driver events were annotated. We found that metastatic cancers had a significantly higher proportion of clonal mutations and a general enrichment of early mutations in p53 and RTK/KRAS pathways. However, while individual pathways demonstrated a clear time-separated preference for specific events, the relative timing did not vary between primary and metastatic cancers. These results indicate that the selective pressure that drives cancer development does not change dramatically between primary and metastatic cancer on a genomic level, and is mainly focused on alterations that increase proliferation.

20.
Nat Commun ; 13(1): 6360, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36289203

ABSTRACT

Chromosomal instability is a major challenge to patient stratification and targeted drug development for high-grade serous ovarian carcinoma (HGSOC). Here we show that somatic copy number alterations (SCNAs) in frequently amplified HGSOC cancer genes significantly correlate with gene expression and methylation status. We identify five prevalent clonal driver SCNAs (chromosomal amplifications encompassing MYC, PIK3CA, CCNE1, KRAS and TERT) from multi-regional HGSOC data and reason that their strong selection should prioritise them as key biomarkers for targeted therapies. We use primary HGSOC spheroid models to test interactions between in vitro targeted therapy and SCNAs. MYC chromosomal copy number is associated with in-vitro and clinical response to paclitaxel and in-vitro response to mTORC1/2 inhibition. Activation of the mTOR survival pathway in the context of MYC-amplified HGSOC is statistically associated with increased prevalence of SCNAs in genes from the PI3K pathway. Co-occurrence of amplifications in MYC and genes from the PI3K pathway is independently observed in squamous lung cancer and triple negative breast cancer. In this work, we show that identifying co-occurrence of clonal driver SCNA genes could be used to tailor therapeutics for precision medicine.


Subject(s)
Cystadenocarcinoma, Serous , Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , DNA Copy Number Variations , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Cystadenocarcinoma, Serous/drug therapy , Cystadenocarcinoma, Serous/genetics , Cystadenocarcinoma, Serous/metabolism , Class I Phosphatidylinositol 3-Kinases/genetics , Class I Phosphatidylinositol 3-Kinases/metabolism , Paclitaxel/therapeutic use , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...