Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Environ Qual ; 47(3): 480-486, 2018 May.
Article in English | MEDLINE | ID: mdl-29864190

ABSTRACT

Agricultural nutrient management is an issue due to P loss from fields and water quality degradation. This is especially true in watersheds where a history of P application in excess of crop needs has resulted in elevated soil P (legacy P). As practices and policy are implemented in such watersheds to reduce P loss, information is needed on time required to draw down soil P and how much P loss can be reduced by drawdown. We used the Annual P Loss Estimator (APLE) model to simulate soil P drawdown in Maryland, and to estimate P loss at a statewide scale associated with different combinations of soil P and P transport. Simulated APLE soil P drawdown compared well with measured rates from three field sites, showing that APLE can reliably simulate P dynamics for Maryland soils. Statewide APLE simulations of average annual P loss from cropland (0.84 kg ha) also compared well with estimates from the Chesapeake Bay Model (0.87 kg ha). The APLE results suggest that it is realistic to expect that a concerted effort to reduce high P soils throughout the state can reduce P loss to the Chesapeake Bay by 40%. However, P loss reduction would be achieved gradually over several decades, since soil P drawdown is very slow. Combining soil P drawdown with aggressive conservation efforts to reduce P transport in erosion could achieve a 62% reduction in state-level P loss. This 62% reduction could be considered a maximum amount possible that is still compatible with modern agriculture.


Subject(s)
Phosphorus/analysis , Soil/chemistry , Water Quality , Agriculture , Bays , Maryland
2.
J Environ Qual ; 44(2): 524-34, 2015 Mar.
Article in English | MEDLINE | ID: mdl-26023971

ABSTRACT

Leaching of phosphorus (P) mobilizes edaphic and applied sources of P and is a primary pathway of concern in agricultural soils of the Delmarva Peninsula, which defines the eastern boundary of the eutrophic Chesapeake Bay. We evaluated P leaching before and after poultry litter application from intact soil columns (30 cm diameter × 50 cm depth) obtained from low- and high-P members of four dominant Delmarva Peninsula soils. Surface soil textures ranged from fine sand to silt loam, and Mehlich-3 soil P ranged from 64 to 628 mg kg. Irrigation of soil columns before litter application pointed to surface soil P controls on dissolved P in leachate (with soil P sorption saturation providing a stronger relationship than Mehlich-3 P); however, strong relationships between P in the subsoil (45-50 cm) and leachate P concentrations were also observed ( = 0.61-0.73). After poultry litter application (4.5 Mg ha), leachate P concentrations and loads increased significantly for the finest-textured soils, consistent with observations that well-structured soils have the greatest propensity to transmit applied P. Phosphorus derived from poultry litter appeared to contribute 41 and 76% of total P loss in leachate from the two soils with the finest textures. Results point to soil P, including P sorption saturation, as a sound metric of P loss potential in leachate when manure is not an acute source of P but highlight the need to factor in macropore transport potential to predict leaching losses from applied P sources.

3.
J Environ Qual ; 40(2): 292-301, 2011.
Article in English | MEDLINE | ID: mdl-21520735

ABSTRACT

Managing manure in reduced tillage and forage systems presents challenges, as incorporation by tillage is not compatible. Surface-applied manure that is not quickly incorporated into soil provides inefficient delivery of manure nutrients to crops due to environmental losses through ammonia (NH3) volatilization and nutrient losses in runoff, and serves as a major source of nuisance odors. An array of technologies now exist to facilitate the incorporation of liquid manures into soil with restricted or minor soil disturbance, some of which are new: shallow disk injection; chisel injection; aeration infiltration; pressure injection. Surface banding of manure inforages decreases NH3 emissions relative to surface broadcasting, as the canopy can decrease wind speed over the manure, but greater reductions can be achieved with manure injection. Soilaeration is intended to hasten manure infiltration, but its benefits are not consistent and may be related to factors such as soildrainage characteristics. Work remains to be done on refining its method of use and timing relative to manure application, which may improve its effectiveness. Placing manure under the soil surface efficiency by injection offers much promise to improve N use efficiency through less NH3 volatilization, reduced odors and decreased nutrient losses in runoff, relative to surface application. We identified significant gaps in our knowledge as manyof these technologies are relatively new, and this should help target future research efforts including environmental, agronomic, and economic assessments.


Subject(s)
Agriculture/methods , Manure , Soil , Agriculture/instrumentation , Ammonia/metabolism , Crops, Agricultural , Fertilizers , Nitrogen/metabolism , Phosphorus/metabolism , Plant Roots/growth & development , Water Pollutants/chemistry , Water Pollutants/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL