Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
2.
mBio ; 15(4): e0222223, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38411080

ABSTRACT

During HIV infection of CD4+ T cells, ubiquitin pathways are essential to viral replication and host innate immune response; however, the role of specific E3 ubiquitin ligases is not well understood. Proteomics analyses identified 116 single-subunit E3 ubiquitin ligases expressed in activated primary human CD4+ T cells. Using a CRISPR-based arrayed spreading infectivity assay, we systematically knocked out 116 E3s from activated primary CD4+ T cells and infected them with NL4-3 GFP reporter HIV-1. We found 10 E3s significantly positively or negatively affected HIV infection in activated primary CD4+ T cells, including UHRF1 (pro-viral) and TRAF2 (anti-viral). Furthermore, deletion of either TRAF2 or UHRF1 in three JLat models of latency spontaneously increased HIV transcription. To verify this effect, we developed a CRISPR-compatible resting primary human CD4+ T cell model of latency. Using this system, we found that deletion of TRAF2 or UHRF1 initiated latency reactivation and increased virus production from primary human resting CD4+ T cells, suggesting these two E3s represent promising targets for future HIV latency reversal strategies. IMPORTANCE: HIV, the virus that causes AIDS, heavily relies on the machinery of human cells to infect and replicate. Our study focuses on the host cell's ubiquitination system which is crucial for numerous cellular processes. Many pathogens, including HIV, exploit this system to enhance their own replication and survival. E3 proteins are part of the ubiquitination pathway that are useful drug targets for host-directed therapies. We interrogated the 116 E3s found in human immune cells known as CD4+ T cells, since these are the target cells infected by HIV. Using CRISPR, a gene-editing tool, we individually removed each of these enzymes and observed the impact on HIV infection in human CD4+ T cells isolated from healthy donors. We discovered that 10 of the E3 enzymes had a significant effect on HIV infection. Two of them, TRAF2 and UHRF1, modulated HIV activity within the cells and triggered an increased release of HIV from previously dormant or "latent" cells in a new primary T cell assay. This finding could guide strategies to perturb hidden HIV reservoirs, a major hurdle to curing HIV. Our study offers insights into HIV-host interactions, identifies new factors that influence HIV infection in immune cells, and introduces a novel methodology for studying HIV infection and latency in human immune cells.


Subject(s)
CCAAT-Enhancer-Binding Proteins , HIV Infections , HIV , TNF Receptor-Associated Factor 2 , Ubiquitin-Protein Ligases , Virus Latency , Humans , CCAAT-Enhancer-Binding Proteins/metabolism , CD4-Positive T-Lymphocytes , CRISPR-Cas Systems , TNF Receptor-Associated Factor 2/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitins/metabolism , Virus Replication , HIV/physiology
3.
ACS Omega ; 9(1): 1990-1999, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38222588

ABSTRACT

Developing thermally stable reverse osmosis membranes is a potential game-changer in high-temperature water treatment. In this work, the performance of three commercial reverse osmosis membranes was evaluated with a series of high-temperature filtrations. The membranes were tested with different filtration methodologies: long-term operation, cyclic tests, controlled stepwise temperature increment, and permeability tests. The morphological and physiochemical characterizations were performed to study the impact of high-temperature filtration on the membranes' chemical composition and morphological characteristics. An increase in the temperature deteriorated the membrane performance in terms of water flux and salt rejection. Flux decline at high temperatures was recognized as the primary concern for high-temperature filtrations, restricting the applications of commercial membranes for long-term operations. This research provides valuable insights for researchers aiming to thoroughly characterize reverse osmosis membranes at high temperatures.

4.
Stem Cell Reports ; 18(11): 2138-2153, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37863045

ABSTRACT

Congenital heart disease often arises from perturbations of transcription factors (TFs) that guide cardiac development. ISLET1 (ISL1) is a TF that influences early cardiac cell fate, as well as differentiation of other cell types including motor neuron progenitors (MNPs) and pancreatic islet cells. While lineage specificity of ISL1 function is likely achieved through combinatorial interactions, its essential cardiac interacting partners are unknown. By assaying ISL1 genomic occupancy in human induced pluripotent stem cell-derived cardiac progenitors (CPs) or MNPs and leveraging the deep learning approach BPNet, we identified motifs of other TFs that predicted ISL1 occupancy in each lineage, with NKX2.5 and GATA motifs being most closely associated to ISL1 in CPs. Experimentally, nearly two-thirds of ISL1-bound loci were co-occupied by NKX2.5 and/or GATA4. Removal of NKX2.5 from CPs led to widespread ISL1 redistribution, and overexpression of NKX2.5 in MNPs led to ISL1 occupancy of CP-specific loci. These results reveal how ISL1 guides lineage choices through a combinatorial code that dictates genomic occupancy and transcription.


Subject(s)
Induced Pluripotent Stem Cells , Transcription Factors , Humans , Transcription Factors/metabolism , Myocytes, Cardiac , LIM-Homeodomain Proteins/genetics , LIM-Homeodomain Proteins/metabolism , Induced Pluripotent Stem Cells/metabolism , Cell Differentiation/genetics , Homeobox Protein Nkx-2.5/genetics , Homeobox Protein Nkx-2.5/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism
5.
Nat Commun ; 14(1): 6030, 2023 09 27.
Article in English | MEDLINE | ID: mdl-37758692

ABSTRACT

Influenza A Virus (IAV) is a recurring respiratory virus with limited availability of antiviral therapies. Understanding host proteins essential for IAV infection can identify targets for alternative host-directed therapies (HDTs). Using affinity purification-mass spectrometry and global phosphoproteomic and protein abundance analyses using three IAV strains (pH1N1, H3N2, H5N1) in three human cell types (A549, NHBE, THP-1), we map 332 IAV-human protein-protein interactions and identify 13 IAV-modulated kinases. Whole exome sequencing of patients who experienced severe influenza reveals several genes, including scaffold protein AHNAK, with predicted loss-of-function variants that are also identified in our proteomic analyses. Of our identified host factors, 54 significantly alter IAV infection upon siRNA knockdown, and two factors, AHNAK and coatomer subunit COPB1, are also essential for productive infection by SARS-CoV-2. Finally, 16 compounds targeting our identified host factors suppress IAV replication, with two targeting CDK2 and FLT3 showing pan-antiviral activity across influenza and coronavirus families. This study provides a comprehensive network model of IAV infection in human cells, identifying functional host targets for pan-viral HDT.


Subject(s)
COVID-19 , Influenza A Virus, H5N1 Subtype , Influenza A virus , Influenza, Human , Humans , Influenza A virus/genetics , Influenza, Human/genetics , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/metabolism , Proteomics , Virus Replication/genetics , SARS-CoV-2 , Antiviral Agents/metabolism , Host-Pathogen Interactions/genetics
6.
Nat Commun ; 13(1): 1752, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35365639

ABSTRACT

Human Immunodeficiency Virus (HIV) relies on host molecular machinery for replication. Systematic attempts to genetically or biochemically define these host factors have yielded hundreds of candidates, but few have been functionally validated in primary cells. Here, we target 426 genes previously implicated in the HIV lifecycle through protein interaction studies for CRISPR-Cas9-mediated knock-out in primary human CD4+ T cells in order to systematically assess their functional roles in HIV replication. We achieve efficient knockout (>50% of alleles) in 364 of the targeted genes and identify 86 candidate host factors that alter HIV infection. 47 of these factors validate by multiplex gene editing in independent donors, including 23 factors with restrictive activity. Both gene editing efficiencies and HIV-1 phenotypes are highly concordant among independent donors. Importantly, over half of these factors have not been previously described to play a functional role in HIV replication, providing numerous novel avenues for understanding HIV biology. These data further suggest that host-pathogen protein-protein interaction datasets offer an enriched source of candidates for functional host factor discovery and provide an improved understanding of the mechanics of HIV replication in primary T cells.


Subject(s)
HIV Infections , HIV-1 , CD4-Positive T-Lymphocytes/metabolism , Gene Editing , HIV-1/genetics , Host Microbial Interactions/genetics , Humans
7.
Cell ; 185(5): 794-814.e30, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35182466

ABSTRACT

Congenital heart disease (CHD) is present in 1% of live births, yet identification of causal mutations remains challenging. We hypothesized that genetic determinants for CHDs may lie in the protein interactomes of transcription factors whose mutations cause CHDs. Defining the interactomes of two transcription factors haplo-insufficient in CHD, GATA4 and TBX5, within human cardiac progenitors, and integrating the results with nearly 9,000 exomes from proband-parent trios revealed an enrichment of de novo missense variants associated with CHD within the interactomes. Scoring variants of interactome members based on residue, gene, and proband features identified likely CHD-causing genes, including the epigenetic reader GLYR1. GLYR1 and GATA4 widely co-occupied and co-activated cardiac developmental genes, and the identified GLYR1 missense variant disrupted interaction with GATA4, impairing in vitro and in vivo function in mice. This integrative proteomic and genetic approach provides a framework for prioritizing and interrogating genetic variants in heart disease.


Subject(s)
GATA4 Transcription Factor/metabolism , Heart Defects, Congenital , Nuclear Proteins/metabolism , Oxidoreductases/metabolism , Transcription Factors , Animals , Heart Defects, Congenital/genetics , Mice , Mutation , Proteomics , T-Box Domain Proteins/genetics , Transcription Factors/genetics
8.
Science ; 374(6563): eabf3066, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34591612

ABSTRACT

Cancers have been associated with a diverse array of genomic alterations. To help mechanistically understand such alterations in breast-invasive carcinoma, we applied affinity purification­mass spectrometry to delineate comprehensive biophysical interaction networks for 40 frequently altered breast cancer (BC) proteins, with and without relevant mutations, across three human breast cell lines. These networks identify cancer-specific protein-protein interactions (PPIs), interconnected and enriched for common and rare cancer mutations, that are substantially rewired by the introduction of key BC mutations. Our analysis identified BPIFA1 and SCGB2A1 as PIK3CA-interacting proteins, which repress PI3K-AKT signaling, and uncovered USP28 and UBE2N as functionally relevant interactors of BRCA1. We also show that the protein phosphatase 1 regulatory subunit spinophilin interacts with and regulates dephosphorylation of BRCA1 to promote DNA double-strand break repair. Thus, PPI landscapes provide a powerful framework for mechanistically interpreting disease genomic data and can identify valuable therapeutic targets.


Subject(s)
Breast Neoplasms/metabolism , Neoplasm Proteins/metabolism , Protein Interaction Maps , Breast Neoplasms/genetics , Cell Line, Tumor , Female , Humans , Mass Spectrometry , Mutation , Neoplasm Proteins/genetics , Neoplasm Proteins/isolation & purification , Tandem Affinity Purification
9.
Science ; 374(6563): eabf2911, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34591642

ABSTRACT

We outline a framework for elucidating tumor genetic complexity through multidimensional protein-protein interaction maps and apply it to enhancing our understanding of head and neck squamous cell carcinoma. This network uncovers 771 interactions from cancer and noncancerous cell states, including WT and mutant protein isoforms. Prioritization of cancer-enriched interactions reveals a previously unidentified association of the fibroblast growth factor receptor tyrosine kinase 3 with Daple, a guanine-nucleotide exchange factor, resulting in activation of Gαi- and p21-activated protein kinase 1/2 to promote cancer cell migration. Additionally, we observe mutation-enriched interactions between the human epidermal growth factor receptor 3 (HER3) receptor tyrosine kinase and PIK3CA (the alpha catalytic subunit of phosphatidylinositol 3-kinase) that can inform the response to HER3 inhibition in vivo. We anticipate that the application of this framework will be valuable for translating genetic alterations into a molecular and clinical understanding of the underlying biology of many disease areas.


Subject(s)
Carcinoma, Squamous Cell/metabolism , Class I Phosphatidylinositol 3-Kinases/genetics , Class I Phosphatidylinositol 3-Kinases/metabolism , Drug Resistance, Neoplasm/genetics , Head and Neck Neoplasms/metabolism , Protein Interaction Maps , Animals , Carcinoma, Squamous Cell/genetics , Cell Line, Tumor , Cell Movement , Female , Head and Neck Neoplasms/genetics , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Mice, Nude , Microfilament Proteins/metabolism , Mutation , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Xenograft Model Antitumor Assays
10.
Nat Microbiol ; 6(10): 1319-1333, 2021 10.
Article in English | MEDLINE | ID: mdl-34556855

ABSTRACT

The fate of influenza A virus (IAV) infection in the host cell depends on the balance between cellular defence mechanisms and viral evasion strategies. To illuminate the landscape of IAV cellular restriction, we generated and integrated global genetic loss-of-function screens with transcriptomics and proteomics data. Our multi-omics analysis revealed a subset of both IFN-dependent and independent cellular defence mechanisms that inhibit IAV replication. Amongst these, the autophagy regulator TBC1 domain family member 5 (TBC1D5), which binds Rab7 to enable fusion of autophagosomes and lysosomes, was found to control IAV replication in vitro and in vivo and to promote lysosomal targeting of IAV M2 protein. Notably, IAV M2 was observed to abrogate TBC1D5-Rab7 binding through a physical interaction with TBC1D5 via its cytoplasmic tail. Our results provide evidence for the molecular mechanism utilised by IAV M2 protein to escape lysosomal degradation and traffic to the cell membrane, where it supports IAV budding and growth.


Subject(s)
Autophagy , Immune Evasion , Influenza A virus/physiology , Antiviral Agents/metabolism , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Host-Pathogen Interactions , Humans , Influenza A virus/pathogenicity , Lysosomes/metabolism , Protein Binding , Viral Matrix Proteins/metabolism , Virus Replication , rab GTP-Binding Proteins/metabolism , rab7 GTP-Binding Proteins
11.
Cell Rep ; 35(6): 109105, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33979618

ABSTRACT

Genome engineering of primary human cells with CRISPR-Cas9 has revolutionized experimental and therapeutic approaches to cell biology, but human myeloid-lineage cells have remained largely genetically intractable. We present a method for the delivery of CRISPR-Cas9 ribonucleoprotein (RNP) complexes by nucleofection directly into CD14+ human monocytes purified from peripheral blood, leading to high rates of precise gene knockout. These cells can be efficiently differentiated into monocyte-derived macrophages or dendritic cells. This process yields genetically edited cells that retain transcript and protein markers of myeloid differentiation and phagocytic function. Genetic ablation of the restriction factor SAMHD1 increased HIV-1 infection >50-fold, demonstrating the power of this system for genotype-phenotype interrogation. This fast, flexible, and scalable platform can be used for genetic studies of human myeloid cells in immune signaling, inflammation, cancer immunology, host-pathogen interactions, and beyond, and could facilitate the development of myeloid cellular therapies.


Subject(s)
CRISPR-Cas Systems/genetics , Genome/genetics , Myeloid Cells/metabolism , Ribonucleoproteins/metabolism , Animals , Humans , Mice
12.
Neurology ; 96(18): e2323-e2331, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33762421

ABSTRACT

OBJECTIVE: To determine whether IV metoclopramide 20 mg + diphenhydramine 25 mg (M + D) was more efficacious than IV placebo for acute moderate or severe posttraumatic headache in the emergency room. METHODS: We conducted this randomized, double-blind, placebo-controlled, parallel-group study in 2 urban emergency departments (EDs). Participants who experienced head trauma and presented to our EDs within 10 days with a headache fulfilling criteria for acute posttraumatic headache were included. We randomized participants in a 1:1 ratio to M + D or placebo. Participants, caregivers, and outcome assessors were blinded to assignment. The primary outcome was improvement in pain on a scale of 0 to 10 between baseline and 1 hour after treatment. RESULTS: This study was completed between August 2017 and March 2020. We screened 414 patients for participation and randomized 160: 81 to M + D and 79 to placebo. Baseline characteristics were comparable between the groups. All enrolled participants provided primary outcome data. Patients receiving placebo reported mean improvement of 3.8 (SD 2.6), while those receiving M + D improved by 5.2 (SD 2.3), for a difference favoring metoclopramide of 1.4 (95% confidence interval [CI] 0.7-2.2, p < 0.01). Adverse events were reported by 35 of 81 (43%) patients who received metoclopramide and 22 of 79 (28%) of patients who received placebo (95% CI 1-30 for difference of 15%, p = 0.04). CONCLUSION: M + D was more efficacious than placebo with regard to relief of posttraumatic headache in the ED. TRIAL REGISTRATION INFORMATION: ClinicalTrials.gov Identifier: NCT03220958. CLASSIFICATION OF EVIDENCE: This study provides Class I evidence that for patients with acute moderate or severe posttraumatic headache, IV M + D significantly improved pain compared to placebo.


Subject(s)
Acute Pain/drug therapy , Diphenhydramine/administration & dosage , Dopamine D2 Receptor Antagonists/administration & dosage , Hypnotics and Sedatives/administration & dosage , Metoclopramide/administration & dosage , Post-Traumatic Headache/drug therapy , Acute Pain/diagnosis , Administration, Intravenous , Adult , Double-Blind Method , Drug Therapy, Combination , Emergency Service, Hospital/trends , Female , Humans , Male , Middle Aged , Pain Measurement/drug effects , Pain Measurement/methods , Post-Traumatic Headache/diagnosis
13.
Science ; 370(6521)2020 12 04.
Article in English | MEDLINE | ID: mdl-33060197

ABSTRACT

The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a grave threat to public health and the global economy. SARS-CoV-2 is closely related to the more lethal but less transmissible coronaviruses SARS-CoV-1 and Middle East respiratory syndrome coronavirus (MERS-CoV). Here, we have carried out comparative viral-human protein-protein interaction and viral protein localization analyses for all three viruses. Subsequent functional genetic screening identified host factors that functionally impinge on coronavirus proliferation, including Tom70, a mitochondrial chaperone protein that interacts with both SARS-CoV-1 and SARS-CoV-2 ORF9b, an interaction we structurally characterized using cryo-electron microscopy. Combining genetically validated host factors with both COVID-19 patient genetic data and medical billing records identified molecular mechanisms and potential drug treatments that merit further molecular and clinical study.


Subject(s)
COVID-19/metabolism , Coronavirus Nucleocapsid Proteins/metabolism , Host Microbial Interactions , Mitochondrial Membrane Transport Proteins/metabolism , Protein Interaction Maps , SARS-CoV-2/metabolism , Severe Acute Respiratory Syndrome/metabolism , Severe acute respiratory syndrome-related coronavirus/metabolism , Conserved Sequence , Coronavirus Nucleocapsid Proteins/genetics , Cryoelectron Microscopy , Humans , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Precursor Protein Import Complex Proteins , Phosphoproteins/genetics , Phosphoproteins/metabolism , Protein Conformation
14.
J Emerg Med ; 59(6): 805-811, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32919839

ABSTRACT

BACKGROUND: Acute pain can transition to chronic pain, a potentially debilitating illness. OBJECTIVE: We determined how often acute pain transitions to chronic pain among patients in the emergency department (ED) and whether persistent pain 1 week after the ED visit was associated with chronic pain. METHODS: An observational cohort study conducted in two EDs. We included adults with acute pain (≤10 days) if an oral opioid was prescribed. Exclusion criteria were recent opioid use and use of any analgesics regularly prior to onset of the pain. Research associates interviewed patients during the ED visit and 1 week and 6 months later. The primary outcome, chronic pain, was defined as pain on > 50% of days since ED discharge. We constructed logistic regression models to evaluate the association between persistent pain 1 week after an ED visit and chronic pain, while adjusting for demographic and treatment variables. RESULTS: During a 9-month period, we approached 733 patients for participation and enrolled 484; 450 of 484 (93%) provided 1-week outcomes data and 410 of 484 (85%) provided 6-month outcomes data. One week after the ED visit, 348 of 453 (77%; 95% confidence interval [CI] 73-80%) patients reported pain in the affected area. New-onset chronic pain at 6 months was reported by 110 of 408 (27%; 95% CI 23-31%) patients. Presence of pain 1 week after ED visit was associated with chronic pain (odds ratio 3.6; 95% CI 1.6-8.5). CONCLUSIONS: About one-quarter of ED patients with acute pain transition to chronic pain within 6 months. Persistence of pain 1 week after the ED visit can identify patients at risk of transition.


Subject(s)
Acute Pain , Chronic Pain , Adult , Chronic Pain/drug therapy , Cohort Studies , Emergency Service, Hospital , Humans , Prospective Studies
15.
bioRxiv ; 2020 Mar 22.
Article in English | MEDLINE | ID: mdl-32511329

ABSTRACT

An outbreak of the novel coronavirus SARS-CoV-2, the causative agent of COVID-19 respiratory disease, has infected over 290,000 people since the end of 2019, killed over 12,000, and caused worldwide social and economic disruption 1,2 . There are currently no antiviral drugs with proven efficacy nor are there vaccines for its prevention. Unfortunately, the scientific community has little knowledge of the molecular details of SARS-CoV-2 infection. To illuminate this, we cloned, tagged and expressed 26 of the 29 viral proteins in human cells and identified the human proteins physically associated with each using affinity-purification mass spectrometry (AP-MS), which identified 332 high confidence SARS-CoV-2-human protein-protein interactions (PPIs). Among these, we identify 66 druggable human proteins or host factors targeted by 69 existing FDA-approved drugs, drugs in clinical trials and/or preclinical compounds, that we are currently evaluating for efficacy in live SARS-CoV-2 infection assays. The identification of host dependency factors mediating virus infection may provide key insights into effective molecular targets for developing broadly acting antiviral therapeutics against SARS-CoV-2 and other deadly coronavirus strains.

16.
Nat Commun ; 11(1): 2449, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32415096

ABSTRACT

A comprehensive examination of protein-protein interactions (PPIs) is fundamental for the understanding of cellular machineries. However, limitations in current methodologies often prevent the detection of PPIs with low abundance proteins. To overcome this challenge, we develop a mRNA display with library of even-distribution (md-LED) method that facilitates the detection of low abundance binders with high specificity and sensitivity. As a proof-of-principle, we apply md-LED to IAV NS1 protein. Complementary to AP-MS, md-LED enables us to validate previously described PPIs as well as to identify novel NS1 interactors. We show that interacting with FASN allows NS1 to directly regulate the synthesis of cellular fatty acids. We also use md-LED to identify a mutant of NS1, D92Y, results in a loss of interaction with CPSF1. The use of high-throughput sequencing as the readout for md-LED enables sensitive quantification of interactions, ultimately enabling massively parallel experimentation for the investigation of PPIs.


Subject(s)
Gene Library , Influenza A virus/metabolism , Viral Nonstructural Proteins/metabolism , A549 Cells , Fatty Acid Synthase, Type I/metabolism , Gene Ontology , Humans , Influenza A virus/drug effects , Influenza A virus/physiology , Interferons/pharmacology , Lipid Metabolism/drug effects , Mutation/genetics , Protein Binding/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Virus Replication/drug effects , Virus Replication/physiology
17.
Nature ; 583(7816): 459-468, 2020 07.
Article in English | MEDLINE | ID: mdl-32353859

ABSTRACT

A newly described coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is the causative agent of coronavirus disease 2019 (COVID-19), has infected over 2.3 million people, led to the death of more than 160,000 individuals and caused worldwide social and economic disruption1,2. There are no antiviral drugs with proven clinical efficacy for the treatment of COVID-19, nor are there any vaccines that prevent infection with SARS-CoV-2, and efforts to develop drugs and vaccines are hampered by the limited knowledge of the molecular details of how SARS-CoV-2 infects cells. Here we cloned, tagged and expressed 26 of the 29 SARS-CoV-2 proteins in human cells and identified the human proteins that physically associated with each of the SARS-CoV-2 proteins using affinity-purification mass spectrometry, identifying 332 high-confidence protein-protein interactions between SARS-CoV-2 and human proteins. Among these, we identify 66 druggable human proteins or host factors targeted by 69 compounds (of which, 29 drugs are approved by the US Food and Drug Administration, 12 are in clinical trials and 28 are preclinical compounds). We screened a subset of these in multiple viral assays and found two sets of pharmacological agents that displayed antiviral activity: inhibitors of mRNA translation and predicted regulators of the sigma-1 and sigma-2 receptors. Further studies of these host-factor-targeting agents, including their combination with drugs that directly target viral enzymes, could lead to a therapeutic regimen to treat COVID-19.


Subject(s)
Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Coronavirus Infections/metabolism , Drug Repositioning , Molecular Targeted Therapy , Pneumonia, Viral/drug therapy , Pneumonia, Viral/metabolism , Protein Interaction Maps , Viral Proteins/metabolism , Animals , Antiviral Agents/classification , Antiviral Agents/pharmacology , Betacoronavirus/genetics , Betacoronavirus/metabolism , Betacoronavirus/pathogenicity , COVID-19 , Chlorocebus aethiops , Cloning, Molecular , Coronavirus Infections/immunology , Coronavirus Infections/virology , Drug Evaluation, Preclinical , HEK293 Cells , Host-Pathogen Interactions/drug effects , Humans , Immunity, Innate , Mass Spectrometry , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Protein Binding , Protein Biosynthesis/drug effects , Protein Domains , Protein Interaction Mapping , Receptors, sigma/metabolism , SARS-CoV-2 , SKP Cullin F-Box Protein Ligases/metabolism , Vero Cells , Viral Proteins/genetics , COVID-19 Drug Treatment
18.
Nat Protoc ; 14(1): 1-27, 2019 01.
Article in English | MEDLINE | ID: mdl-30559373

ABSTRACT

CRISPR-Cas9 gene-editing strategies have revolutionized our ability to engineer the human genome for robust functional interrogation of complex biological processes. We have recently adapted this technology for use in primary human CD4+ T cells to create a high-throughput platform for analyzing the role of host factors in HIV infection and pathogenesis. Briefly, CRISPR-Cas9 ribonucleoproteins (crRNPs) are synthesized in vitro and delivered to activated CD4+ T cells by nucleofection. These cells are then assayed for editing efficiency and expanded for use in downstream cellular, genetic, or protein-based assays. This platform supports the rapid, arrayed generation of multiple gene manipulations and is widely adaptable across culture conditions, infection protocols, and downstream applications. Here, we present detailed protocols for crRNP synthesis, primary T-cell culture, 96-well nucleofection, molecular validation, and HIV infection, and discuss additional considerations for guide and screen design, as well as crRNP multiplexing. Taken together, this procedure allows high-throughput identification and mechanistic interrogation of HIV host factors in primary CD4+ T cells by gene knockout, validation, and HIV spreading infection in as little as 2-3 weeks.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , CRISPR-Cas Systems , Gene Editing/methods , HIV-1/immunology , High-Throughput Screening Assays , Host-Pathogen Interactions/immunology , Antibodies/pharmacology , Antigens, CD/genetics , Antigens, CD/immunology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , Cell Nucleus/drug effects , Cell Nucleus/immunology , Cell Nucleus/metabolism , Cell Nucleus/virology , Clustered Regularly Interspaced Short Palindromic Repeats , Electroporation/methods , Genome, Human , HIV-1/genetics , Host-Pathogen Interactions/genetics , Humans , Lymphocyte Activation , Primary Cell Culture , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism , Ribonucleoproteins/genetics , Ribonucleoproteins/immunology
19.
PLoS Pathog ; 14(1): e1006830, 2018 01.
Article in English | MEDLINE | ID: mdl-29304101

ABSTRACT

The lentiviral protein Viral Infectivity Factor (Vif) counteracts the antiviral effects of host APOBEC3 (A3) proteins and contributes to persistent HIV infection. Vif targets A3 restriction factors for ubiquitination and proteasomal degradation by recruiting them to a multi-protein ubiquitin E3 ligase complex. Here, we describe a degradation-independent mechanism of Vif-mediated antagonism that was revealed through detailed structure-function studies of antibody antigen-binding fragments (Fabs) to the Vif complex. Two Fabs were found to inhibit Vif-mediated A3 neutralization through distinct mechanisms: shielding A3 from ubiquitin transfer and blocking Vif E3 assembly. Combined biochemical, cell biological and structural studies reveal that disruption of Vif E3 assembly inhibited A3 ubiquitination but was not sufficient to restore its packaging into viral particles and antiviral activity. These observations establish that Vif can neutralize A3 family members in a degradation-independent manner. Additionally, this work highlights the potential of Fabs as functional probes, and illuminates how Vif uses a multi-pronged approach involving both degradation dependent and independent mechanisms to suppress A3 innate immunity.


Subject(s)
Antiviral Agents/pharmacology , Cytosine Deaminase/metabolism , Immunoglobulin Fab Fragments/chemistry , vif Gene Products, Human Immunodeficiency Virus/immunology , APOBEC Deaminases , Antiviral Agents/chemistry , Cullin Proteins/chemistry , Cullin Proteins/metabolism , Cytidine Deaminase , HEK293 Cells , HIV Infections/immunology , HIV Infections/therapy , HIV Infections/virology , HIV-1/immunology , HIV-1/metabolism , Humans , Ubiquitin/metabolism , Ubiquitination , Virus Assembly , vif Gene Products, Human Immunodeficiency Virus/chemistry
20.
Biochim Biophys Acta Proteins Proteom ; 1865(8): 1077-1084, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28528213

ABSTRACT

Ornithine 4,5-aminomutase (OAM) from Clostridium sticklandii is an adenosylcobalamin (AdoCbl) and pyridoxal 5'-phosphate (PLP)-dependent enzyme that catalyzes a 1,2-amino shift, interconverting d-ornithine and 2S, 4R-diaminopentanoate. The reaction occurs via a radical-based mechanism whereby a PLP-bound substrate radical undergoes intramolecular isomerization via an azacyclopropylcarbinyl radical intermediate. Herein, we investigated the catalytic role of active site residues that form non-covalent interactions with PLP and/or substrate, d-ornithine. Kinetic analyses revealed that residues that form salt bridges to the α-carboxylate (R297) or the α-amine (E81) of d-ornithine are most critical for OAM activity as conservative substitutions of these residues results in a 300-600-fold reduction in catalytic turnover and a more pronounced 1000- to 14,000-fold decrease in catalytic efficiency. In contrast, mutating residues that solely interact with the PLP cofactor led to more modest decreases (10-60-fold) in kcat and kcat/Km. All but one variant (S162A) elicited an increase in the kinetic isotope effect on kcat and kcat/Km with d,l-ornithine-3,3,4,4,5,5-d6 as the substrate, which indicates that hydrogen atom abstraction is more rate determining. Electron paramagnetic resonance spectra of the variants reveal that while the substitutions decrease the extent of CoC bond homolysis, they do not affect the structural integrity of the active site. Our experimental results, discussed in context with published computational work, suggests that the protonation state of the PLP cofactor has less of a role in radical-mediated chemistry compared to electrostatic interactions between the substrate and protein.


Subject(s)
Intramolecular Transferases/metabolism , Ornithine/metabolism , Biocatalysis , Catalytic Domain/physiology , Clostridium sticklandii/metabolism , Electron Spin Resonance Spectroscopy/methods , Kinetics , Protein Conformation , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL
...