Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Pediatr Nephrol ; 39(1): 141-148, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37458799

ABSTRACT

BACKGROUND: Primary hyperoxaluria type 1 (PH1) is a rare, severe genetic disease causing increased hepatic oxalate production resulting in urinary stone disease, nephrocalcinosis, and often progressive chronic kidney disease. Little is known about the natural history of urine and plasma oxalate values over time in children with PH1. METHODS: For this retrospective observational study, we analyzed data from genetically confirmed PH1 patients enrolled in the Rare Kidney Stone Consortium PH Registry between 2003 and 2018 who had at least 2 measurements before age 18 years of urine oxalate-to-creatinine ratio (Uox:cr), 24-h urine oxalate excretion normalized to body surface area (24-h Uox), or plasma oxalate concentration (Pox). We compared values among 3 groups: homozygous G170R, heterozygous G170R, and non-G170R AGXT variants both before and after initiating pyridoxine (B6). RESULTS: Of 403 patients with PH1 in the registry, 83 met the inclusion criteria. Uox:cr decreased rapidly over the first 5 years of life. Both before and after B6 initiation, patients with non-G170R had the highest Uox:cr, 24-h Uox, and Pox. Patients with heterozygous G170R had similar Uox:cr to homozygous G170R prior to B6. Patients with homozygous G170R had the lowest 24-h Uox and Uox:cr after B6. Urinary oxalate excretion and Pox tend to decrease over time during childhood. eGFR over time was not different among groups. CONCLUSIONS: Children with PH1 under 5 years old have relatively higher urinary oxalate excretion which may put them at greater risk for nephrocalcinosis and kidney failure than older PH1 patients. Those with homozygous G170R variants may have milder disease. A higher resolution version of the Graphical abstract is available as Supplementary information.


Subject(s)
Hyperoxaluria, Primary , Kidney Calculi , Nephrocalcinosis , Humans , Child , Adolescent , Child, Preschool , Oxalates , Nephrocalcinosis/complications , Hyperoxaluria, Primary/urine , Kidney Calculi/etiology
2.
Pac Symp Biocomput ; 29: 374-388, 2024.
Article in English | MEDLINE | ID: mdl-38160293

ABSTRACT

Many researchers in genetics and social science incorporate information about race in their work. However, migrations (historical and forced) and social mobility have brought formerly separated populations of humans together, creating younger generations of individuals who have more complex and diverse ancestry and race profiles than older age groups. Here, we sought to better understand how temporal changes in genetic admixture influence levels of heterozygosity and impact health outcomes. We evaluated variation in genetic ancestry over 100 birth years in a cohort of 35,842 individuals with electronic health record (EHR) information in the Southeastern United States. Using the software STRUCTURE, we analyzed 2,678 ancestrally informative markers relative to three ancestral clusters (African, East Asian, and European) and observed rising levels of admixture for all clinically-defined race groups since 1990. Most race groups also exhibited increases in heterozygosity and long-range linkage disequilibrium over time, further supporting the finding of increasing admixture in young individuals in our cohort. These data are consistent with United States Census information from broader geographic areas and highlight the changing demography of the population. This increased diversity challenges classic approaches to studies of genotype-phenotype relationships which motivated us to explore the relationship between heterozygosity and disease diagnosis. Using a phenome-wide association study approach, we explored the relationship between admixture and disease risk and found that increased admixture resulted in protective associations with female reproductive disorders and increased risk for diseases with links to autoimmune dysfunction. These data suggest that tendencies in the United States population are increasing ancestral complexity over time. Further, these observations imply that, because both prevalence and severity of many diseases vary by race groups, complexity of ancestral origins influences health and disparities.


Subject(s)
Computational Biology , Genetics, Population , Population Health , Racial Groups , Aged , Humans , Linkage Disequilibrium , Software , United States/epidemiology
3.
Am J Kidney Dis ; 81(2): 145-155.e1, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35843439

ABSTRACT

RATIONALE & OBJECTIVE: Lumasiran reduces urinary and plasma oxalate (POx) in patients with primary hyperoxaluria type 1 (PH1) and relatively preserved kidney function. ILLUMINATE-C evaluates the efficacy, safety, pharmacokinetics, and pharmacodynamics of lumasiran in patients with PH1 and advanced kidney disease. STUDY DESIGN: Phase 3, open-label, single-arm trial. SETTING & PARTICIPANTS: Multinational study; enrolled patients with PH1 of all ages, estimated glomerular filtration rate ≤45 mL/min/1.73 m2 (if age ≥12 months) or increased serum creatinine level (if age <12 months), and POx ≥20 µmol/L at screening, including patients with or without systemic oxalosis. INTERVENTION: Lumasiran administered subcutaneously; 3 monthly doses followed by monthly or quarterly weight-based dosing. OUTCOME: Primary end point: percent change in POx from baseline to month 6 (cohort A; not receiving hemodialysis at enrollment) and percent change in predialysis POx from baseline to month 6 (cohort B; receiving hemodialysis at enrollment). Pharmacodynamic secondary end points: percent change in POx area under the curve between dialysis sessions (cohort B only); absolute change in POx; percent and absolute change in spot urinary oxalate-creatinine ratio; and 24-hour urinary oxalate adjusted for body surface area. RESULTS: All patients (N = 21; 43% female; 76% White) completed the 6-month primary analysis period. Median age at consent was 8 (range, 0-59) years. For the primary end point, least-squares mean reductions in POx were 33.3% (95% CI, -15.2% to 81.8%) in cohort A (n = 6) and 42.4% (95% CI, 34.2%-50.7%) in cohort B (n = 15). Improvements were also observed in all pharmacodynamic secondary end points. Most adverse events were mild or moderate. No patient discontinued treatment or withdrew from the study. The most commonly reported lumasiran-related adverse events were injection-site reactions, all of which were mild and transient. LIMITATIONS: Single-arm study without placebo control. CONCLUSIONS: Lumasiran resulted in substantial reductions in POx with acceptable safety in patients with PH1 who have advanced kidney disease, supporting its efficacy and safety in this patient population. FUNDING: Alnylam Pharmaceuticals. TRIAL REGISTRATION: Registered at ClinicalTrials.gov with study number NCT04152200 and at EudraCT with study number 2019-001346-17. PLAIN-LANGUAGE SUMMARY: Primary hyperoxaluria type 1 (PH1) is a rare genetic disease characterized by excessive hepatic oxalate production that frequently causes kidney failure. Lumasiran is an RNA interference therapeutic that is administered subcutaneously for the treatment of PH1. Lumasiran has been shown to reduce oxalate levels in the urine and plasma of patients with PH1 who have relatively preserved kidney function. In the ILLUMINATE-C study, the efficacy and safety of lumasiran were evaluated in patients with PH1 and advanced kidney disease, including a cohort of patients undergoing hemodialysis. During the 6-month primary analysis period, lumasiran resulted in substantial reductions in plasma oxalate with acceptable safety in patients with PH1 complicated by advanced kidney disease.


Subject(s)
Hyperoxaluria, Primary , Hyperoxaluria , Kidney Diseases , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Young Adult , Hyperoxaluria, Primary/complications , Kidney Diseases/complications , Oxalates
4.
Pediatr Nephrol ; 38(4): 1075-1086, 2023 04.
Article in English | MEDLINE | ID: mdl-35913563

ABSTRACT

BACKGROUND: Primary hyperoxaluria type 1 (PH1) is a rare genetic disease that causes progressive kidney damage and systemic oxalosis due to hepatic overproduction of oxalate. Lumasiran demonstrated efficacy and safety in the 6-month primary analysis period of the phase 3, multinational, open-label, single-arm ILLUMINATE-B study of infants and children < 6 years old with PH1 (ClinicalTrials.gov: NCT03905694 (4/1/2019); EudraCT: 2018-004,014-17 (10/12/2018)). Outcomes in the ILLUMINATE-B extension period (EP) for patients who completed ≥ 12 months on study are reported here. METHODS: Of the 18 patients enrolled in the 6-month primary analysis period, all entered the EP and completed ≥ 6 additional months of lumasiran treatment (median (range) duration of total exposure, 17.8 (12.7-20.5) months). RESULTS: Lumasiran treatment was previously reported to reduce spot urinary oxalate:creatinine ratio by 72% at month 6, which was maintained at 72% at month 12; mean month 12 reductions in prespecified weight subgroups were 89%, 68%, and 71% for patients weighing < 10 kg, 10 to < 20 kg, and ≥ 20 kg, respectively. The mean reduction from baseline in plasma oxalate level was reported to be 32% at month 6, and this improved to 47% at month 12. Additional improvements were also seen in nephrocalcinosis grade, and kidney stone event rates remained low. The most common lumasiran-related adverse events were mild, transient injection-site reactions (3 patients (17%)). CONCLUSIONS: Lumasiran treatment provided sustained reductions in urinary and plasma oxalate through month 12 across all weight subgroups, with an acceptable safety profile, in infants and young children with PH1. A higher resolution version of the Graphical abstract is available as Supplementary information.


Subject(s)
Hyperoxaluria, Primary , Kidney Calculi , Child , Child, Preschool , Humans , Infant , Hyperoxaluria, Primary/complications , Hyperoxaluria, Primary/drug therapy , Kidney Calculi/etiology , Oxalates/adverse effects
5.
Kidney Int Rep ; 7(3): 494-506, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35257062

ABSTRACT

Introduction: Primary hyperoxaluria type 1 (PH1) is a rare genetic disease caused by hepatic overproduction of oxalate, leading to kidney stones, nephrocalcinosis, kidney failure, and systemic oxalosis. In the 6-month double-blind period (DBP) of ILLUMINATE-A, a phase 3, randomized, placebo-controlled trial in patients with PH1 ≥6 years old, treatment with lumasiran, an RNA interference therapeutic, led to substantial reductions in urinary oxalate (UOx) levels. Methods: We report data to month 12 in the extension period (EP) of ILLUMINATE-A, including patients who continued lumasiran (lumasiran/lumasiran) or crossed over from placebo to lumasiran (placebo/lumasiran). Results: In the lumasiran/lumasiran group (n = 24), the reduction in 24-hour UOx level was sustained to month 12 (mean reduction from baseline, 66.9% at month 6; 64.1% at month 12). The placebo/lumasiran group (n = 13) had a similar time course and magnitude of 24-hour UOx reduction (mean reduction, 57.3%) after 6 months of lumasiran. Kidney stone event rates seemed to be lower after 6 months of lumasiran in both groups compared with the 12 months before consent, and this reduction was maintained at month 12 in the lumasiran/lumasiran group. At study start, 71% of patients in the lumasiran/lumasiran group and 92% in the placebo/lumasiran group had nephrocalcinosis. Nephrocalcinosis grade improved after 6 months of lumasiran in the lumasiran/lumasiran and placebo/lumasiran groups (13% and 8% of patients, respectively). After an additional 6 months of lumasiran, 46% of patients had improvement in nephrocalcinosis grade within the lumasiran/lumasiran group. Estimated glomerular filtration rate (eGFR) remained stable during the course of lumasiran treatment. The most common adverse events (AEs) related to lumasiran were mild, transient injection-site reactions (ISRs). Conclusion: Long-term lumasiran treatment enabled sustained lowering of UOx levels with acceptable safety and encouraging results on clinical outcomes.

6.
Genet Med ; 24(3): 654-662, 2022 03.
Article in English | MEDLINE | ID: mdl-34906487

ABSTRACT

PURPOSE: Primary hyperoxaluria type 1 (PH1) is a rare, progressive, genetic disease with limited treatment options. We report the efficacy and safety of lumasiran, an RNA interference therapeutic, in infants and young children with PH1. METHODS: This single-arm, open-label, phase 3 study evaluated lumasiran in patients aged <6 years with PH1 and an estimated glomerular filtration rate >45 mL/min/1.73 m2, if aged ≥12 months, or normal serum creatinine, if aged <12 months. The primary end point was percent change in spot urinary oxalate to creatinine ratio (UOx:Cr) from baseline to month 6. Secondary end points included proportion of patients with urinary oxalate ≤1.5× upper limit of normal and change in plasma oxalate. RESULTS: All patients (N = 18) completed the 6-month primary analysis period. Median age at consent was 50.1 months. Least-squares mean percent reduction in spot UOx:Cr was 72.0%. At month 6, 50% of patients (9/18) achieved spot UOx:Cr ≤1.5× upper limit of normal. Least-squares mean percent reduction in plasma oxalate was 31.7%. The most common treatment-related adverse events were transient, mild, injection-site reactions. CONCLUSION: Lumasiran showed rapid, sustained reduction in spot UOx:Cr and plasma oxalate and acceptable safety in patients aged <6 years with PH1, establishing RNA interference therapies as safe, effective treatment options for infants and young children.


Subject(s)
Hyperoxaluria, Primary , RNAi Therapeutics , Child, Preschool , Humans , Hyperoxaluria, Primary/complications , Hyperoxaluria, Primary/genetics , Hyperoxaluria, Primary/therapy , Infant , RNA Interference , RNA, Small Interfering
7.
Clin J Am Soc Nephrol ; 16(7): 1025-1036, 2021 07.
Article in English | MEDLINE | ID: mdl-33985991

ABSTRACT

BACKGROUND AND OBJECTIVES: In the rare disease primary hyperoxaluria type 1, overproduction of oxalate by the liver causes kidney stones, nephrocalcinosis, kidney failure, and systemic oxalosis. Lumasiran, an RNA interference therapeutic, suppresses glycolate oxidase, reducing hepatic oxalate production. The objective of this first-in-human, randomized, placebo-controlled trial was to evaluate the safety, pharmacokinetic, and pharmacodynamic profiles of lumasiran in healthy participants and patients with primary hyperoxaluria type 1. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: This phase 1/2 study was conducted in two parts. In part A, healthy adults randomized 3:1 received a single subcutaneous dose of lumasiran or placebo in ascending dose groups (0.3-6 mg/kg). In part B, patients with primary hyperoxaluria type 1 randomized 3:1 received up to three doses of lumasiran or placebo in cohorts of 1 or 3 mg/kg monthly or 3 mg/kg quarterly. Patients initially assigned to placebo crossed over to lumasiran on day 85. The primary outcome was incidence of adverse events. Secondary outcomes included pharmacokinetic and pharmacodynamic parameters, including measures of oxalate in patients with primary hyperoxaluria type 1. Data were analyzed using descriptive statistics. RESULTS: Thirty-two healthy participants and 20 adult and pediatric patients with primary hyperoxaluria type 1 were enrolled. Lumasiran had an acceptable safety profile, with no serious adverse events or study discontinuations attributed to treatment. In part A, increases in mean plasma glycolate concentration, a measure of target engagement, were observed in healthy participants. In part B, patients with primary hyperoxaluria type 1 had a mean maximal reduction from baseline of 75% across dosing cohorts in 24-hour urinary oxalate excretion. All patients achieved urinary oxalate levels ≤1.5 times the upper limit of normal. CONCLUSIONS: Lumasiran had an acceptable safety profile and reduced urinary oxalate excretion in all patients with primary hyperoxaluria type 1 to near-normal levels. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER: Study of Lumasiran in Healthy Adults and Patients with Primary Hyperoxaluria Type 1, NCT02706886.


Subject(s)
Hyperoxaluria, Primary/drug therapy , Oxalates/urine , RNA, Small Interfering/pharmacology , RNA, Small Interfering/pharmacokinetics , Renal Agents/pharmacology , Renal Agents/pharmacokinetics , Adolescent , Adult , Child , Female , Glycolates/blood , Humans , Hyperoxaluria, Primary/blood , Hyperoxaluria, Primary/urine , Male , RNA, Small Interfering/adverse effects , Renal Agents/adverse effects , Single-Blind Method , Young Adult
8.
N Engl J Med ; 384(13): 1216-1226, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33789010

ABSTRACT

BACKGROUND: Primary hyperoxaluria type 1 (PH1) is a rare genetic disease caused by hepatic overproduction of oxalate that leads to kidney stones, nephrocalcinosis, kidney failure, and systemic oxalosis. Lumasiran, an investigational RNA interference (RNAi) therapeutic agent, reduces hepatic oxalate production by targeting glycolate oxidase. METHODS: In this double-blind, phase 3 trial, we randomly assigned (in a 2:1 ratio) patients with PH1 who were 6 years of age or older to receive subcutaneous lumasiran or placebo for 6 months (with doses given at baseline and at months 1, 2, 3, and 6). The primary end point was the percent change in 24-hour urinary oxalate excretion from baseline to month 6 (mean percent change across months 3 through 6). Secondary end points included the percent change in the plasma oxalate level from baseline to month 6 (mean percent change across months 3 through 6) and the percentage of patients with 24-hour urinary oxalate excretion no higher than 1.5 times the upper limit of the normal range at month 6. RESULTS: A total of 39 patients underwent randomization; 26 were assigned to the lumasiran group and 13 to the placebo group. The least-squares mean difference in the change in 24-hour urinary oxalate excretion (lumasiran minus placebo) was -53.5 percentage points (P<0.001), with a reduction in the lumasiran group of 65.4% and an effect seen as early as month 1. The between-group differences for all hierarchically tested secondary end points were significant. The difference in the percent change in the plasma oxalate level (lumasiran minus placebo) was -39.5 percentage points (P<0.001). In the lumasiran group, 84% of patients had 24-hour urinary oxalate excretion no higher than 1.5 times the upper limit of the normal range at month 6, as compared with 0% in the placebo group (P<0.001). Mild, transient injection-site reactions were reported in 38% of lumasiran-treated patients. CONCLUSIONS: Lumasiran reduced urinary oxalate excretion, the cause of progressive kidney failure in PH1. The majority of patients who received lumasiran had normal or near-normal levels after 6 months of treatment. (Funded by Alnylam Pharmaceuticals; ILLUMINATE-A ClinicalTrials.gov number, NCT03681184.).


Subject(s)
Hyperoxaluria, Primary/drug therapy , Oxalates/urine , RNA, Small Interfering/therapeutic use , RNAi Therapeutics , Adolescent , Adult , Child , Creatinine/urine , Double-Blind Method , Female , Glomerular Filtration Rate , Humans , Hyperoxaluria, Primary/blood , Hyperoxaluria, Primary/complications , Hyperoxaluria, Primary/urine , Kidney Calculi/prevention & control , Male , Middle Aged , Oxalates/blood , Oxalates/metabolism , RNA, Small Interfering/adverse effects , Young Adult
9.
Pediatrics ; 147(1)2021 01.
Article in English | MEDLINE | ID: mdl-33372121

ABSTRACT

Medium-chain acyl-coenzyme A dehydrogenase deficiency (MCADD) is a fatty acid oxidation disorder in which the patient is unable to break down fats to produce energy. This disorder places children at risk for metabolic decompensation during periods of stress, such as routine childhood illnesses. The intent of this clinical report is to provide pediatricians with additional information regarding the acute clinical care of patients with MCADD. Although each patient with MCADD will still be expected to have a primary metabolic physician, the involvement of the primary care provider is crucial as well. Appropriate treatment of children with MCADD can lead to avoidance of morbidity and mortality.


Subject(s)
Acyl-CoA Dehydrogenase/deficiency , Lipid Metabolism, Inborn Errors/therapy , Carnitine/therapeutic use , Child , Emergencies , Fluid Therapy , Glucose/administration & dosage , Humans , Hypoglycemia/etiology , Hypoglycemia/therapy , Intraoperative Complications/prevention & control , Lipid Metabolism, Inborn Errors/complications , Lipid Metabolism, Inborn Errors/diagnosis , Postoperative Complications/prevention & control , Premedication , Sweetening Agents/administration & dosage
10.
Elife ; 92020 03 24.
Article in English | MEDLINE | ID: mdl-32207686

ABSTRACT

By sequencing autozygous human populations, we identified a healthy adult woman with lifelong complete knockout of HAO1 (expected ~1 in 30 million outbred people). HAO1 (glycolate oxidase) silencing is the mechanism of lumasiran, an investigational RNA interference therapeutic for primary hyperoxaluria type 1. Her plasma glycolate levels were 12 times, and urinary glycolate 6 times, the upper limit of normal observed in healthy reference individuals (n = 67). Plasma metabolomics and lipidomics (1871 biochemicals) revealed 18 markedly elevated biochemicals (>5 sd outliers versus n = 25 controls) suggesting additional HAO1 effects. Comparison with lumasiran preclinical and clinical trial data suggested she has <2% residual glycolate oxidase activity. Cell line p.Leu333SerfsTer4 expression showed markedly reduced HAO1 protein levels and cellular protein mis-localisation. In this woman, lifelong HAO1 knockout is safe and without clinical phenotype, de-risking a therapeutic approach and informing therapeutic mechanisms. Unlocking evidence from the diversity of human genetic variation can facilitate drug development.


Subject(s)
Alcohol Oxidoreductases/genetics , Hyperoxaluria, Primary/therapy , RNAi Therapeutics , Adult , Alcohol Oxidoreductases/antagonists & inhibitors , Animals , CHO Cells , Cricetulus , Female , Glycolates/metabolism , Humans , Hyperoxaluria, Primary/metabolism
11.
Clin J Am Soc Nephrol ; 15(7): 1056-1065, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32165440

ABSTRACT

Patients with primary hyperoxaluria experience kidney stones from a young age and can develop progressive oxalate nephropathy. Progression to kidney failure often develops over a number of years, and is associated with systemic oxalosis, intensive dialysis, and often combined kidney and liver transplantation. There are no therapies approved by the Food and Drug Association. Thus, the Kidney Health Initiative, in partnership with the Oxalosis and Hyperoxaluria Foundation, initiated a project to identify end points for clinical trials. A workgroup of physicians, scientists, patients with primary hyperoxaluria, industry, and United States regulators critically examined the published literature for clinical outcomes and potential surrogate end points that could be used to evaluate new treatments. Kidney stones, change in eGFR, urine oxalate, and plasma oxalate were the strongest candidate end points. Kidney stones affect how patients with primary hyperoxaluria feel and function, but standards for measurement and monitoring are lacking. Primary hyperoxaluria registry data suggest that eGFR decline in most patients is gradual, but can be unpredictable. Epidemiologic data show a strong relationship between urine oxalate and long-term kidney function loss. Urine oxalate is reasonably likely to predict clinical benefit, due to its causal role in stone formation and kidney damage in CKD stages 1-3a, and plasma oxalate is likely associated with risk of systemic oxalosis in CKD 3b-5. Change in slope of eGFR could be considered the equivalent of a clinically meaningful end point in support of traditional approval. A substantial change in urine oxalate as a surrogate end point could support traditional approval in patients with primary hyperoxaluria type 1 and CKD stages 1-3a. A substantial change in markedly elevated plasma oxalate could support accelerated approval in patients with primary hyperoxaluria and CKD stages 3b-5. Primary hyperoxaluria type 1 accounts for the preponderance of available data, thus heavily influences the conclusions. Addressing gaps in data will further facilitate testing of promising new treatments, accelerating improved outcomes for patients with primary hyperoxaluria.


Subject(s)
Endpoint Determination , Hyperoxaluria, Primary/physiopathology , Hyperoxaluria, Primary/therapy , Oxalic Acid/blood , Oxalic Acid/urine , Biomarkers/blood , Biomarkers/urine , Disease Progression , Glomerular Filtration Rate , Humans , Hyperoxaluria, Primary/complications , Kidney Calculi/etiology
12.
Pediatr Res ; 87(1): 118-124, 2020 01.
Article in English | MEDLINE | ID: mdl-31454829

ABSTRACT

BACKGROUND: Pediatric acute kidney injury (AKI) is common and associated with increased morbidity, mortality, and length of stay. We performed a pragmatic randomized trial testing the hypothesis that AKI risk alerts increase AKI screening. METHODS: All intensive care and ward admissions of children aged 28 days through 21 years without chronic kidney disease from 12/6/2016 to 11/1/2017 were included. The intervention alert displayed if calculated AKI risk was > 50% and no serum creatinine (SCr) was ordered within 24 h. The primary outcome was SCr testing within 48 h of AKI risk > 50%. RESULTS: Among intensive care admissions, 973/1909 (51%) were randomized to the intervention. Among those at risk, more SCr tests were ordered for the intervention group than for controls (418/606, 69% vs. 361/597, 60%, p = 0.002). AKI incidence and severity were the same in intervention and control groups. Among ward admissions, 5492/10997 (50%) were randomized to the intervention, and there were no differences between groups in SCr testing, AKI incidence, or severity of AKI. CONCLUSIONS: Alerts based on real-time prediction of AKI risk increased screening rates in intensive care but not pediatric ward settings. Pragmatic clinical trials provide the opportunity to assess clinical decision support and potentially eliminate ineffective alerts.


Subject(s)
Acute Kidney Injury/diagnosis , Creatinine/blood , Decision Support Systems, Clinical , Hospital Information Systems , Inpatients , Reminder Systems , Acute Kidney Injury/blood , Acute Kidney Injury/etiology , Acute Kidney Injury/mortality , Adolescent , Age Factors , Biomarkers/blood , Child , Female , Humans , Infant , Intensive Care Units, Pediatric , Length of Stay , Male , Predictive Value of Tests , Risk Assessment , Risk Factors , Severity of Illness Index , Tennessee , Time Factors
13.
Science ; 359(6381): 1233-1239, 2018 03 16.
Article in English | MEDLINE | ID: mdl-29590070

ABSTRACT

Genetic association studies often examine features independently, potentially missing subpopulations with multiple phenotypes that share a single cause. We describe an approach that aggregates phenotypes on the basis of patterns described by Mendelian diseases. We mapped the clinical features of 1204 Mendelian diseases into phenotypes captured from the electronic health record (EHR) and summarized this evidence as phenotype risk scores (PheRSs). In an initial validation, PheRS distinguished cases and controls of five Mendelian diseases. Applying PheRS to 21,701 genotyped individuals uncovered 18 associations between rare variants and phenotypes consistent with Mendelian diseases. In 16 patients, the rare genetic variants were associated with severe outcomes such as organ transplants. PheRS can augment rare-variant interpretation and may identify subsets of patients with distinct genetic causes for common diseases.


Subject(s)
Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/genetics , Genetic Predisposition to Disease , DNA Mutational Analysis , Databases, Genetic , Electronic Health Records , Exome , Genetic Association Studies , Genetic Variation , Humans , Phenotype , Risk Factors
14.
Am J Med Genet A ; 176(3): 692-698, 2018 03.
Article in English | MEDLINE | ID: mdl-29388319

ABSTRACT

Mitochondrial NAD kinase deficiency (NADK2D, OMIM #615787) is a rare autosomal recessive disorder of NADPH biosynthesis that can cause hyperlysinemia and dienoyl-CoA reductase deficiency (DECRD, OMIM #616034). NADK2 deficiency has been reported in only three unrelated patients. Two had severe, unremitting disease; one died at 4 months and the other at 5 years of age. The third was a 10 year old female with CNS anomalies, ataxia, and incoordination. In two cases mutations in NADK2 have been demonstrated. Here, we report the fourth known case, a 15 year old female with normal intelligence and a mild clinical and biochemical phenotype presumably without DECRD. Her clinical symptoms, which are now stable, became evident at the age of 9 with the onset of decreased visual acuity, bilateral optic atrophy, nystagmus, episodic lower extremity weakness, peripheral neuropathy, and gait abnormalities. Plasma amino acid levels were within normal limits except for mean lysine and proline levels that were 3.7 and 2.5 times the upper limits of normal. Whole exome sequencing (WES) revealed homozygosity for a g.36241900 A>G p. Met1Val start loss mutation in the primary NADK2 transcript (NM_001085411.1) encoding the 442 amino acid isoform. This presumed hypomorphic mutation has not been previously reported and is absent from the v1000GP, EVS, and ExAC databases. Our patient's normal intelligence and stable disease expands the clinical heterogeneity and the prognosis associated with NADK2 deficiency. Our findings also clarify the mechanism underlying NADK2 deficiency and suggest that this disease should be ruled out in cases of hyperlysinemia, especially those with visual loss, and neurological phenotypes.


Subject(s)
Genes, Mitochondrial , Genetic Association Studies , Mitochondrial Proteins/deficiency , Mitochondrial Proteins/genetics , Mutation , Phenotype , Phosphotransferases (Alcohol Group Acceptor)/deficiency , Phosphotransferases (Alcohol Group Acceptor)/genetics , Adolescent , Alleles , Amino Acid Sequence , Amino Acid Substitution , Biomarkers , Brain/pathology , DNA Mutational Analysis , Female , Genotype , Humans , Magnetic Resonance Imaging , Male , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/metabolism , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Phosphotransferases (Alcohol Group Acceptor)/metabolism
15.
Exp Dermatol ; 27(3): 302-310, 2018 03.
Article in English | MEDLINE | ID: mdl-29341265

ABSTRACT

Primary cicatricial alopecias (PCAs) are a group of skin diseases in which there is progressive and permanent destruction of hair follicles followed by replacement with fibrous tissue. Unfortunately, by the time patients seek clinical evaluation of their hair loss, the skin is already inflamed and/or scarred, so there is little hope for a return to their normal hair growth pattern. Clinical and basic science investigations are now focusing on three forms of human PCA: lichen planopilaris (LPP), frontal fibrosing alopecia (FFA) and central centrifugal cicatricial alopecia (CCCA). Transcriptome, lipidome and other new technologies are providing new insight into the pathogenesis of some of these diseases that are being validated and further investigated using spontaneous and genetically engineered mouse models.


Subject(s)
Alopecia/diagnosis , Alopecia/etiology , Cicatrix/diagnosis , Cicatrix/etiology , Disease Models, Animal , Lichen Planus/diagnosis , Skin/pathology , Alopecia/pathology , Alopecia/therapy , Animals , Cicatrix/pathology , Cicatrix/therapy , Dogs , Fibrosis , Humans , Lichen Planus/pathology , Mice , Scalp
16.
Pediatr Res ; 82(3): 465-473, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28486440

ABSTRACT

BackgroundAcute kidney injury (AKI) is common in pediatric inpatients and is associated with increased morbidity, mortality, and length of stay. Its early identification can reduce severity.MethodsTo create and validate an electronic health record (EHR)-based AKI screening tool, we generated temporally distinct development and validation cohorts using retrospective data from our tertiary care children's hospital, including children aged 28 days through 21 years with sufficient serum creatinine measurements to determine AKI status. AKI was defined as 1.5-fold or 0.3 mg/dl increase in serum creatinine. Age, medication exposures, platelet count, red blood cell distribution width, serum phosphorus, serum transaminases, hypotension (ICU only), and pH (ICU only) were included in AKI risk prediction models.ResultsFor ICU patients, 791/1,332 (59%) of the development cohort and 470/866 (54%) of the validation cohort had AKI. In external validation, the ICU prediction model had a c-statistic=0.74 (95% confidence interval 0.71-0.77). For non-ICU patients, 722/2,337 (31%) of the development cohort and 469/1,474 (32%) of the validation cohort had AKI, and the prediction model had a c-statistic=0.69 (95% confidence interval 0.66-0.72).ConclusionsAKI screening can be performed using EHR data. The AKI screening tool can be incorporated into EHR systems to identify high-risk patients without serum creatinine data, enabling targeted laboratory testing, early AKI identification, and modification of care.


Subject(s)
Acute Kidney Injury/diagnosis , Electronic Health Records , Inpatients , Models, Theoretical , Acute Kidney Injury/blood , Adolescent , Adult , Child , Cohort Studies , Creatinine/blood , Humans , Infant, Newborn , Intensive Care Units , Young Adult
17.
Laryngoscope ; 127(1): 179-185, 2017 01.
Article in English | MEDLINE | ID: mdl-27295947

ABSTRACT

OBJECTIVES/HYPOTHESIS: Idiopathic subglottic stenosis (iSGS) is an unexplained obstruction involving the lower laryngeal and upper tracheal airway. Persistent mucosal inflammation is a hallmark of the disease. Epithelial microbiota dysbiosis is found in other chronic inflammatory mucosal diseases; however, the relationship between tracheal microbiota composition and iSGS is unknown. Given the critical role for host defense at mucosal barriers, we analyzed tissue specimens from iSGS patients for the presence of microbial pathogens. METHODS: Utilizing 30 human iSGS, 20 intubation-related tracheal stenosis (iLTS), and 20 healthy control specimens, we applied molecular, immunohistochemical, electron microscopic, immunologic, and Sanger-sequencing techniques. RESULTS: With unbiased culture-independent nucleic acid, protein, and immunologic approaches, we demonstrate that Mycobacterium species are uniquely associated with iSGS. Phylogenetic analysis of the mycobacterial virulence factor rpoB suggests that, rather than Mycobacterium tuberculosis, a variant member of the Mycobacterium tuberculosis complex or a closely related novel mycobacterium is present in iSGS specimens. CONCLUSION: These studies identify a novel pathogenic role for established large airway bacteria and provide new targets for future therapeutic intervention. LEVEL OF EVIDENCE: NA Laryngoscope, 127:179-185, 2017.


Subject(s)
Laryngostenosis/microbiology , Mycobacterium/isolation & purification , Tracheal Stenosis/microbiology , Case-Control Studies , Humans , Immunohistochemistry , In Situ Hybridization , Intubation, Intratracheal/adverse effects , Laryngostenosis/etiology , Microbiota , Microscopy, Electron , Phylogeny , Polymerase Chain Reaction , Tracheal Stenosis/etiology
19.
Laryngoscope ; 126(11): E356-E361, 2016 11.
Article in English | MEDLINE | ID: mdl-27296163

ABSTRACT

OBJECTIVES/HYPOTHESIS: Idiopathic subglottic stenosis (iSGS) is a rare and devastating extrathoracic obstruction involving the lower laryngeal and upper tracheal airway. It arises without known antecedent injury or associated disease process. Persistent mucosal inflammation and a localized fibrotic response are hallmarks of the disease. Despite the initial clinical description of iSGS more than 40 year ago, there have been no substantive investigations into the pathogenesis of this enigmatic and progressive airway obstruction. In these studies, we present the initial characterization of the molecular pathogenesis underlying the fibrosing phenotype of iSGS. METHODS: Utilizing 20 human iSGS and healthy control specimens, we applied histologic, immunohistochemical, molecular, and immunologic techniques. RESULTS: We demonstrate significant activation of the canonical IL-23/IL-17A pathway in the tracheal mucosa of iSGS patients, as well as identify γδ T cells as the primary cellular source of IL-17A. CONCLUSION: Our results suggest that aberrant mucosal immune activation is a component in of the pathogenesis of iSGS. Most critically, our work offers new targets for future therapeutic intervention. LEVEL OF EVIDENCE: NA Laryngoscope, 126:E356-E361, 2016.


Subject(s)
Inflammation Mediators/physiology , Interleukin-17/physiology , Interleukin-23/physiology , Signal Transduction/physiology , Tracheal Stenosis/metabolism , Airway Obstruction/etiology , Case-Control Studies , Humans , Larynx/metabolism , Larynx/pathology , Trachea/metabolism , Trachea/pathology , Tracheal Stenosis/complications , Tracheal Stenosis/pathology
20.
Am J Kidney Dis ; 67(3): 384-90, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26319754

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) has been characterized in high-risk pediatric hospital inpatients, in whom AKI is frequent and associated with increased mortality, morbidity, and length of stay. The incidence of AKI among patients not requiring intensive care is unknown. STUDY DESIGN: Retrospective cohort study. SETTING & PARTICIPANTS: 13,914 noncritical admissions during 2011 and 2012 at our tertiary referral pediatric hospital were evaluated. Patients younger than 28 days or older than 21 years of age or with chronic kidney disease (CKD) were excluded. Admissions with 2 or more serum creatinine measurements were evaluated. FACTORS: Demographic features, laboratory measurements, medication exposures, and length of stay. OUTCOME: AKI defined as increased serum creatinine level in accordance with KDIGO (Kidney Disease: Improving Global Outcomes) criteria. Based on time of admission, time interval requirements were met in 97% of cases, but KDIGO time window criteria were not strictly enforced to allow implementation using clinically obtained data. RESULTS: 2 or more creatinine measurements (one baseline before or during admission and a second during admission) in 2,374 of 13,914 (17%) patients allowed for AKI evaluation. A serum creatinine difference ≥0.3mg/dL or ≥1.5 times baseline was seen in 722 of 2,374 (30%) patients. A minimum of 5% of all noncritical inpatients without CKD in pediatric wards have an episode of AKI during routine hospital admission. LIMITATIONS: Urine output, glomerular filtration rate, and time interval criteria for AKI were not applied secondary to study design and available data. The evaluated cohort was restricted to patients with 2 or more clinically obtained serum creatinine measurements, and baseline creatinine level may have been measured after the AKI episode. CONCLUSIONS: AKI occurs in at least 5% of all noncritically ill hospitalized children, adolescents, and young adults without known CKD. Physicians should increase their awareness of AKI and improve surveillance strategies with serum creatinine measurements in this population so that exacerbating factors such as nephrotoxic medication exposures may be modified as indicated.


Subject(s)
Acute Kidney Injury , Creatinine/analysis , Acute Kidney Injury/diagnosis , Acute Kidney Injury/epidemiology , Acute Kidney Injury/etiology , Acute Kidney Injury/prevention & control , Adolescent , Child , Child, Preschool , Cohort Studies , Female , Hospital Mortality , Humans , Incidence , Infant , Inpatients/statistics & numerical data , Kidney Function Tests/methods , Length of Stay , Male , Retrospective Studies , Risk Factors , Severity of Illness Index , Tertiary Care Centers/statistics & numerical data , Time Factors , United States/epidemiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL