Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Biology (Basel) ; 11(11)2022 Oct 30.
Article in English | MEDLINE | ID: mdl-36358294

ABSTRACT

Sea lettuce (Ulva spp.), with its worldwide distribution and remarkable ability to grow rapidly under various conditions, represents an important natural resource that is still under-exploited. Its biomass can be used for a wide range of applications in the food/feed, pharmaceutical, nutraceutical, biofuel, and bioremediation industries. However, knowledge of the factors affecting Ulva biomass yield and composition is far from complete. Indeed, the respective contributions of the microbiome, natural genetic variation in Ulva species, environmental conditions and importantly, the interactions between these three factors on the Ulva biomass, have been only partially elucidated. Further investigation is important for the implementation of large-scale Ulva aquaculture, which requires stable and controlled biomass composition and yields. In this review, we document Ulva biomass composition, describe the uses of Ulva biomass and we propose different strategies for developing a sustainable and profitable Ulva aquaculture industry.

2.
G3 (Bethesda) ; 12(9)2022 08 25.
Article in English | MEDLINE | ID: mdl-35792875

ABSTRACT

Genomic prediction has revolutionized crop breeding despite remaining issues of transferability of models to unseen environmental conditions and environments. Usage of endophenotypes rather than genomic markers leads to the possibility of building phenomic prediction models that can account, in part, for this challenge. Here, we compare and contrast genomic prediction and phenomic prediction models for 3 growth-related traits, namely, leaf count, tree height, and trunk diameter, from 2 coffee 3-way hybrid populations exposed to a series of treatment-inducing environmental conditions. The models are based on 7 different statistical methods built with genomic markers and ChlF data used as predictors. This comparative analysis demonstrates that the best-performing phenomic prediction models show higher predictability than the best genomic prediction models for the considered traits and environments in the vast majority of comparisons within 3-way hybrid populations. In addition, we show that phenomic prediction models are transferrable between conditions but to a lower extent between populations and we conclude that chlorophyll a fluorescence data can serve as alternative predictors in statistical models of coffee hybrid performance. Future directions will explore their combination with other endophenotypes to further improve the prediction of growth-related traits for crops.


Subject(s)
Coffee , Phenomics , Chlorophyll A , Coffee/genetics , Genome, Plant , Genomics/methods , Genotype , Hybridization, Genetic , Models, Genetic , Phenotype , Plant Breeding
3.
Plant J ; 110(6): 1791-1810, 2022 06.
Article in English | MEDLINE | ID: mdl-35411592

ABSTRACT

Wild relatives of tomato are a valuable source of natural variation in tomato breeding, as many can be hybridized to the cultivated species (Solanum lycopersicum). Several, including Solanum lycopersicoides, have been crossed to S. lycopersicum for the development of ordered introgression lines (ILs), facilitating breeding for desirable traits. Despite the utility of these wild relatives and their associated ILs, few finished genome sequences have been produced to aid genetic and genomic studies. Here we report a chromosome-scale genome assembly for S. lycopersicoides LA2951, which contains 37 938 predicted protein-coding genes. With the aid of this genome assembly, we have precisely delimited the boundaries of the S. lycopersicoides introgressions in a set of S. lycopersicum cv. VF36 × LA2951 ILs. We demonstrate the usefulness of the LA2951 genome by identifying several quantitative trait loci for phenolics and carotenoids, including underlying candidate genes, and by investigating the genome organization and immunity-associated function of the clustered Pto gene family. In addition, syntenic analysis of R2R3MYB genes sheds light on the identity of the Aubergine locus underlying anthocyanin production. The genome sequence and IL map provide valuable resources for studying fruit nutrient/quality traits, pathogen resistance, and environmental stress tolerance. We present a new genome resource for the wild species S. lycopersicoides, which we use to shed light on the Aubergine locus responsible for anthocyanin production. We also provide IL boundary mappings, which facilitated identifying novel carotenoid quantitative trait loci of which one was likely driven by an uncharacterized lycopene ß-cyclase whose function we demonstrate.


Subject(s)
Solanum lycopersicum , Solanum , Anthocyanins/genetics , Chromosomes, Plant/genetics , Solanum lycopersicum/genetics , Plant Breeding , Solanum/genetics
4.
Plant Reprod ; 35(3): 189-204, 2022 09.
Article in English | MEDLINE | ID: mdl-35247095

ABSTRACT

Plastid ribosomal proteins (PRPs) can play essential roles in plastid ribosome functioning that affect plant function and development. However, the roles of many PRPs remain unknown, including elucidation of which PRPs are essential or display redundancy. Here, we report that the nuclear-encoded PLASTID RIBOSOMAL PROTEIN L5 (PRPL5) is essential for early embryo development in A. thaliana, as homozygous loss-of-function mutations in the PRPL5 gene impairs chloroplast development and leads to embryo failure to develop past the globular stage. We confirmed the prpl5 embryo-lethal phenotype by generating a mutant CRISPR/Cas9 line and by genetic complementation. As PRPL5 underwent transfer to the nuclear genome early in the evolution of Embryophyta, PRPL5 can be expected to have acquired a chloroplast transit peptide. We identify and validate the presence of an N-terminal chloroplast transit peptide, but unexpectedly also confirm the presence of a conserved and functional Nuclear Localization Signal on the protein C-terminal end. This study highlights the fundamental role of the plastid translation machinery during the early stages of embryo development in plants and raises the possibility of additional roles of plastid ribosomal proteins in the nucleus.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Embryonic Development , Gene Expression Regulation, Plant , Mutation , Plastids/metabolism , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Ribosomes/genetics , Ribosomes/metabolism
5.
Mol Ecol Resour ; 22(1): 86-101, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34153167

ABSTRACT

Accurate species identification often relies on public repositories to compare the barcode sequences of the investigated individual(s) with taxonomically assigned sequences. However, the accuracy of identifications in public repositories is often questionable, and the names originally given are rarely updated. For instance, species of the Sea Lettuce (Ulva spp.; Ulvophyceae, Ulvales, Ulvaceae) are frequently misidentified in public repositories, including herbaria and gene banks, making species identification based on traditional barcoding unreliable. We DNA barcoded 295 individual distromatic foliose strains of Ulva from the North-East Atlantic for three loci (rbcL, tufA, ITS1). Seven distinct species were found, and we compared our results with all worldwide Ulva spp. sequences present in the NCBI database for the three barcodes rbcL, tufA and the ITS1. Our results demonstrate a large degree of species misidentification, where we estimate that 24%-32% of the entries pertaining to foliose species are misannotated and provide an exhaustive list of NCBI sequences reannotations. An analysis of the global distribution of registered samples from foliose species also indicates possible geographical isolation for some species, and the absence of U. lactuca from Northern Europe. We extended our analytical framework to three other genera, Fucus, Porphyra and Pyropia and also identified erroneously labelled accessions and possibly new synonymies, albeit less than for Ulva spp. Altogether, exhaustive taxonomic clarification by aggregation of a library of barcode sequences highlights misannotations and delivers an improved representation of species diversity and distribution.


Subject(s)
Geography , Europe
6.
Plant Cell ; 33(4): 1135-1150, 2021 05 31.
Article in English | MEDLINE | ID: mdl-33793816

ABSTRACT

The 45S rRNA genes (rDNA) are among the largest repetitive elements in eukaryotic genomes. rDNA consists of tandem arrays of rRNA genes, many of which are transcriptionally silenced. Silent rDNA repeats may act as 'back-up' copies for ribosome biogenesis and have nuclear organization roles. Through Cas9-mediated genome editing in the Arabidopsis thaliana female gametophyte, we reduced 45S rDNA copy number (CN) to a plateau of ∼10%. Two independent lines had rDNA CNs reduced by up to 90% at the T7 generation, named low copy number (LCN) lines. Despite drastic reduction of rDNA copies, rRNA transcriptional rates, and steady-state levels remained the same as wild-type plants. Gene dosage compensation of rRNA transcript levels was associated with reduction of silencing histone marks at rDNA loci and altered Nucleolar Organiser Region 2 organization. Although overall genome integrity of LCN lines appears unaffected, a chromosome segmental duplication occurred in one of the lines. Transcriptome analysis of LCN seedlings identified several shared dysregulated genes and pathways in both independent lines. Cas9 genome editing of rRNA repeats to generate LCN lines provides a powerful technique to elucidate rDNA dosage compensation mechanisms and impacts of low rDNA CN on genome stability, development, and cellular processes.


Subject(s)
Arabidopsis/genetics , Dosage Compensation, Genetic , Gene Dosage , CRISPR-Cas Systems , Chromatin/genetics , DNA, Ribosomal/genetics , Gene Expression Regulation, Plant , Genomic Instability , Plants, Genetically Modified , RNA, Ribosomal/metabolism
7.
J Phycol ; 57(1): 219-233, 2021 02.
Article in English | MEDLINE | ID: mdl-32996142

ABSTRACT

Foliose Ulva spp. have become increasingly important worldwide for their environmental and financial impacts. A large number of such Ulva species have rapid reproduction and proliferation habits, which explains why they are responsible for Ulva blooms, known as "green tides", having dramatic negative effects on coastal ecosystems, but also making them attractive for aquaculture applications. Despite the increasing interest in the genus Ulva, particularly on the larger foliose species for aquaculture, their inter- and intra-specific genetic diversity is still poorly described. We compared the cytoplasmic genome (chloroplast and mitochondrion) of 110 strains of large distromatic foliose Ulva from Ireland, Brittany (France), the Netherlands and Portugal. We found six different species, with high levels of inter-specific genetic diversity, despite highly similar or overlapping morphologies. Genetic variation was as high as 82 SNPs/kb between Ulva pseudorotundata and U. laetevirens, indicating considerable genetic diversity. On the other hand, intra-specific genetic diversity was relatively low, with only 36 variant sites (0.03 SNPs/kb) in the mitochondrial genome of the 29 Ulva rigida individuals found in this study, despite different geographical origins. The use of next-generation sequencing allowed for the detection of a single inter-species hybrid between two genetically closely related species, U. laetevirens, and U. rigida, among the 110 strains analyzed in this study. Altogether, this study represents an important advance in our understanding of Ulva biology and provides genetic information for genomic selection of large foliose strains in aquaculture.


Subject(s)
Ulva , Ecosystem , France , Genetic Variation , Ireland , Portugal , Ulva/genetics
8.
Plant J ; 104(1): 96-112, 2020 09.
Article in English | MEDLINE | ID: mdl-32603508

ABSTRACT

Transgenes have become essential to modern biology, being an important tool in functional genomic studies and also in the development of biotechnological products. One of the major challenges in the generation of transgenic lines concerns the expression of transgenes, which, compared to endogenes, are particularly susceptible to silencing mediated by small RNAs (sRNAs). Several reasons have been put forward to explain why transgenes often trigger the production of sRNAs, such as the high level of expression induced by commonly used strong constitutive promoters, the lack of introns, and features resembling viral and other exogenous sequences. However, the relative contributions of the different genomic elements with respect to protecting genes from the silencing machinery and their molecular mechanisms remain unclear. Here, we present the results of a mutagenesis screen conceived to identify features involved in the protection of endogenes against becoming a template for the production of sRNAs. Interestingly, all of the recovered mutants had alterations in genes with proposed function in transcription termination, suggesting a central role of terminators in this process. Indeed, using a GFP reporter system, we show that, among different genetic elements tested, the terminator sequence had the greatest effect on transgene-derived sRNA accumulation and that a well-defined poly(A) site might be especially important. Finally, we describe an unexpected mechanism, where transgenes containing certain intron/terminator combinations lead to an increase in the production of sRNAs, which appears to interfere with splicing.


Subject(s)
RNA Interference , Terminator Regions, Genetic , Transgenes , Arabidopsis/genetics , Mutagenesis , RNA, Small Interfering , Nicotiana/genetics , Transcription, Genetic
9.
Plant Physiol ; 180(1): 109-123, 2019 05.
Article in English | MEDLINE | ID: mdl-30755474

ABSTRACT

Green macroalgae of the genus Ulva play a key role in coastal ecosystems and are of increasing commercial importance. However, physiological differences between strains and species have yet to be described in detail. Furthermore, the strains of Ulva used in aquaculture usually originate from opportunistic collection in the wild without prior selection of best performing strains. Hence, efforts are required to detect the potential variability in growth and metabolic accumulation between Ulva strains and ultimately select the best performing strains under given environmental conditions. Here, the growth, physiological, and metabolic characteristics of 49 laminar Ulva spp. strains were investigated using a custom-made high-throughput phenotyping platform, enzymatic assays, and gas chromatography-mass spectrometry. We found large natural variation for a wide range of growth and metabolic characteristics, with growth rates varying from 0.09 to 0.37 mg.mg-1d-1 among strains. Ulva spp. possess a unique diurnal growth pattern and primary metabolism compared with land plants, with higher growth rates during the night than during the light period. Starch and sucrose only contributed on average 35% of the carbon required to sustain Ulva's night growth. Nitrates accumulated during the night in Ulva tissues, and nitrate accumulation and consumption was positively correlated with growth. In addition, we identified six amino acids as possible biomarkers for high growth in Ulva The large variability in growth and metabolite accumulation recorded among morphologically similar Ulva strains justifies future efforts in strain selection for increasing biomass, metabolite yields, and nutrient removal in the growing aquaculture industry.


Subject(s)
Circadian Rhythm , Ulva/growth & development , Aquaculture , Carbon/metabolism , Genome-Wide Association Study , Nitrates/metabolism , Phenotype , Phylogeny , Ulva/genetics , Ulva/metabolism
10.
Plant Cell Rep ; 36(6): 1005-1008, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28289885

ABSTRACT

RNA-guided endonuclease-mediated targeted mutagenesis using the clustered regularly interspersed short palindromic repeats (CRISPR)/Cas9 system has been successful at targeting specific loci for modification in plants. While polyploidy is an evolutionary mechanism enabling plant adaptation, the analysis of gene function in polyploid plants has been limited due to challenges associated with generating polyploid knockout mutants for all gene copies in polyploid plant lines. This study investigated whether CRISPR/Cas9 mediated targeted mutagenesis can generate nulliplex tetraploid mutant lines in Arabidopsis thaliana, while also comparing the relative efficiency of targeted mutagenesis in tetraploid (4x) versus diploid (2x) backgrounds. Using CRISPR/Cas9 genome editing to generate knockout alleles of the TTG1 gene, we demonstrate that homozygous nulliplex mutants can be directly generated in tetraploid Arabidopsis thaliana plants. CRISPR/Cas9 genome editing now provides a route to more efficient generation of polyploid mutants for improving understanding of genome dosage effects in plants.


Subject(s)
Arabidopsis/metabolism , CRISPR-Cas Systems/physiology , Genome, Plant/genetics , Plants, Genetically Modified/metabolism , Polyploidy , Arabidopsis/genetics , CRISPR-Cas Systems/genetics , Endonucleases , Gene Editing , Plants, Genetically Modified/genetics
11.
Methods Mol Biol ; 1062: 211-24, 2014.
Article in English | MEDLINE | ID: mdl-24057368

ABSTRACT

In plants, double-stranded RNA (dsRNA) is an effective trigger of RNA silencing, and several classes of endogenous small RNA (sRNA), processed from dsRNA substrates by DICER-like (DCL) endonucleases, are essential in controlling gene expression. One such sRNA class, the microRNAs (miRNAs) control the expression of closely related genes to regulate all aspects of plant development, including the determination of leaf shape, leaf polarity, flowering time, and floral identity. A single miRNA sRNA silencing signal is processed from a long precursor transcript of nonprotein-coding RNA, termed the primary miRNA (pri-miRNA). A region of the pri-miRNA is partially self-complementary allowing the transcript to fold back onto itself to form a stem-loop structure of imperfectly dsRNA. Artificial miRNA (amiRNA) technology uses endogenous pri-miRNAs, in which the miRNA and miRNA* (passenger strand of the miRNA duplex) sequences have been replaced with corresponding amiRNA/amiRNA* sequences that direct highly efficient RNA silencing of the targeted gene. Here, we describe the rules for amiRNA design, as well as outline the PCR and bacterial cloning procedures involved in the construction of an amiRNA plant expression vector to control target gene expression in Arabidopsis thaliana.


Subject(s)
Arabidopsis/genetics , MicroRNAs/genetics , RNA Interference , Agrobacterium tumefaciens/genetics , Arabidopsis/metabolism , Base Sequence , Cloning, Molecular , Gene Expression Regulation, Plant , Genetic Vectors , Molecular Sequence Data , Plasmids/genetics
12.
Plant J ; 76(3): 519-29, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23937661

ABSTRACT

It is known that 22-nucleotide (nt) microRNAs (miRNAs) derived from asymmetric duplexes trigger phased small-interfering RNA (phasiRNA) production from complementary targets. Here we investigate the efficacy of 22-nt artificial miRNA (amiRNA)-mediated RNA silencing relative to conventional hairpin RNA (hpRNA) and 21-nt amiRNA-mediated RNA silencing. CHALCONE SYNTHASE (CHS) was selected as a target in Arabidopsis thaliana due to the obvious and non-lethal loss of anthocyanin accumulation upon widespread RNA silencing. Over-expression of CHS in the pap1-D background facilitated visual detection of both local and systemic RNA silencing. RNA silencing was initiated in leaf tissues from hpRNA and amiRNA plant expression vectors under the control of an Arabidopsis RuBisCo small subunit 1A promoter (SSU). In this system, hpRNA expression triggered CHS silencing in most leaf tissues but not in roots or seed coats. Similarly, 21-nt amiRNA expression from symmetric miRNA/miRNA* duplexes triggered CHS silencing in all leaf tissues but not in roots or seed coats. However, 22-nt amiRNA expression from an asymmetric duplex triggered CHS silencing in all tissues, including roots and seed coats, in the majority of plant lines. This widespread CHS silencing required RNA-DEPENDENT RNA POLYMERASE6-mediated accumulation of phasiRNAs from the endogenous CHS transcript. These results demonstrate the efficacy of asymmetric 22-nt amiRNA-directed RNA silencing and associated phasiRNA production and activity, in mediating widespread RNA silencing of an endogenous target gene. Asymmetric 22-nt amiRNA-directed RNA silencing requires little modification of existing amiRNA technology and is expected to be effective in suppressing other genes and/or members of gene families.


Subject(s)
Arabidopsis/genetics , Genetic Techniques , MicroRNAs/physiology , RNA Interference , Acyltransferases/genetics , Acyltransferases/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Green Fluorescent Proteins/genetics , Pancreatitis-Associated Proteins , Phenotype , Promoter Regions, Genetic , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Ribulose-Bisphosphate Carboxylase , Transgenes
SELECTION OF CITATIONS
SEARCH DETAIL
...