Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 93(5): 053303, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35649771

ABSTRACT

Image plates (IPs) are a popular detector in the field of laser driven ion acceleration, owing to their high dynamic range and reusability. An absolute calibration of these detectors to laser-driven protons in the routinely produced tens of MeV energy range is, therefore, essential. In this paper, the response of Fujifilm BAS-TR IPs to 1-40 MeV protons is calibrated by employing the detectors in high resolution Thomson parabola spectrometers in conjunction with a CR-39 nuclear track detector to determine absolute proton numbers. While CR-39 was placed in front of the image plate for lower energy protons, it was placed behind the image plate for energies above 10 MeV using suitable metal filters sandwiched between the image plate and CR-39 to select specific energies. The measured response agrees well with previously reported calibrations as well as standard models of IP response, providing, for the first time, an absolute calibration over a large range of proton energies of relevance to current experiments.

2.
Rev Sci Instrum ; 93(3): 033304, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35364990

ABSTRACT

The response of the BAS-TR image plate (IP) was absolutely calibrated using a CR-39 track detector for high linear energy transfer Au ions up to ∼1.6 GeV (8.2 MeV/nucleon), accelerated by high-power lasers. The calibration was carried out by employing a high-resolution Thomson parabola spectrometer, which allowed resolving Au ions with closely spaced ionization states up to 58+. A response function was obtained by fitting the photo-stimulated luminescence per Au ion for different ion energies, which is broadly in agreement with that expected from ion stopping in the active layer of the IP. This calibration would allow quantifying the ion energy spectra for high energy Au ions, which is important for further investigation of the laser-based acceleration of heavy ion beams.

3.
Phys Rev Lett ; 127(19): 194801, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34797126

ABSTRACT

We report on the selective acceleration of carbon ions during the interaction of ultrashort, circularly polarized and contrast-enhanced laser pulses, at a peak intensity of 5.5×10^{20} W/cm^{2}, with ultrathin carbon foils. Under optimized conditions, energies per nucleon of the bulk carbon ions reached significantly higher values than the energies of contaminant protons (33 MeV/nucleon vs 18 MeV), unlike what is typically observed in laser-foil acceleration experiments. Experimental data, and supporting simulations, emphasize different dominant acceleration mechanisms for the two ion species and highlight an (intensity dependent) optimum thickness for radiation pressure acceleration; it is suggested that the preceding laser energy reaching the target before the main pulse arrives plays a key role in a preferential acceleration of the heavier ion species.

SELECTION OF CITATIONS
SEARCH DETAIL
...