Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
ACS Chem Neurosci ; 15(7): 1432-1455, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38477556

ABSTRACT

Alzheimer's disease (AD) is the most prevalent cause of dementia characterized by a progressive cognitive decline. Addressing neuroinflammation represents a promising therapeutic avenue to treat AD; however, the development of effective antineuroinflammatory compounds is often hindered by their limited blood-brain barrier (BBB) permeability. Consequently, there is an urgent need for accurate, preclinical AD patient-specific BBB models to facilitate the early identification of immunomodulatory drugs capable of efficiently crossing the human AD BBB. This study presents a unique approach to BBB drug permeability screening as it utilizes the familial AD patient-derived induced brain endothelial-like cell (iBEC)-based model, which exhibits increased disease relevance and serves as an improved BBB drug permeability assessment tool when compared to traditionally employed in vitro models. To demonstrate its utility as a small molecule drug candidate screening platform, we investigated the effects of diacetylbis(N(4)-methylthiosemicarbazonato)copper(II) (CuII(atsm)) and a library of metal bis(thiosemicarbazone) complexes─a class of compounds exhibiting antineuroinflammatory therapeutic potential in neurodegenerative disorders. By evaluating the toxicity, cellular accumulation, and permeability of those compounds in the AD patient-derived iBEC, we have identified 3,4-hexanedione bis(N(4)-methylthiosemicarbazonato)copper(II) (CuII(dtsm)) as a candidate with good transport across the AD BBB. Furthermore, we have developed a multiplex approach where AD patient-derived iBEC were combined with immune modulators TNFα and IFNγ to establish an in vitro model representing the characteristic neuroinflammatory phenotype at the patient's BBB. Here, we observed that treatment with CuII(dtsm) not only reduced the expression of proinflammatory cytokine genes but also reversed the detrimental effects of TNFα and IFNγ on the integrity and function of the AD iBEC monolayer. This suggests a novel pathway through which copper bis(thiosemicarbazone) complexes may exert neurotherapeutic effects on AD by mitigating BBB neuroinflammation and related BBB integrity impairment. Together, the presented model provides an effective and easily scalable in vitro BBB platform for screening AD drug candidates. Its improved translational potential makes it a valuable tool for advancing the development of metal-based compounds aimed at modulating neuroinflammation in AD.


Subject(s)
Alzheimer Disease , Thiosemicarbazones , Humans , Blood-Brain Barrier/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Copper/metabolism , Neuroinflammatory Diseases , Thiosemicarbazones/pharmacology , Thiosemicarbazones/metabolism , Thiosemicarbazones/therapeutic use , Tumor Necrosis Factor-alpha/metabolism
2.
Mol Neurodegener ; 19(1): 14, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38317225

ABSTRACT

BACKGROUND: Ferroptosis is a form of regulated cell death characterised by lipid peroxidation as the terminal endpoint and a requirement for iron. Although it protects against cancer and infection, ferroptosis is also implicated in causing neuronal death in degenerative diseases of the central nervous system (CNS). The precise role for ferroptosis in causing neuronal death is yet to be fully resolved. METHODS: To elucidate the role of ferroptosis in neuronal death we utilised co-culture and conditioned medium transfer experiments involving microglia, astrocytes and neurones. We ratified clinical significance of our cell culture findings via assessment of human CNS tissue from cases of the fatal, paralysing neurodegenerative condition of amyotrophic lateral sclerosis (ALS). We utilised the SOD1G37R mouse model of ALS and a CNS-permeant ferroptosis inhibitor to verify pharmacological significance in vivo. RESULTS: We found that sublethal ferroptotic stress selectively affecting microglia triggers an inflammatory cascade that results in non-cell autonomous neuronal death. Central to this cascade is the conversion of astrocytes to a neurotoxic state. We show that spinal cord tissue from human cases of ALS exhibits a signature of ferroptosis that encompasses atomic, molecular and biochemical features. Further, we show the molecular correlation between ferroptosis and neurotoxic astrocytes evident in human ALS-affected spinal cord is recapitulated in the SOD1G37R mouse model where treatment with a CNS-permeant ferroptosis inhibitor, CuII(atsm), ameliorated these markers and was neuroprotective. CONCLUSIONS: By showing that microglia responding to sublethal ferroptotic stress culminates in non-cell autonomous neuronal death, our results implicate microglial ferroptotic stress as a rectifiable cause of neuronal death in neurodegenerative disease. As ferroptosis is currently primarily regarded as an intrinsic cell death phenomenon, these results introduce an entirely new pathophysiological role for ferroptosis in disease.


Subject(s)
Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Mice , Animals , Humans , Microglia/metabolism , Amyotrophic Lateral Sclerosis/metabolism , Superoxide Dismutase-1/metabolism , Neurodegenerative Diseases/metabolism , Cell Death , Disease Models, Animal
3.
Chem Asian J ; 18(18): e202300556, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37442812

ABSTRACT

Single-crystal X-ray diffraction studies for a variety of metal ion complexes of functionalised sarcophagines (sarcophagine=sar=3,6,10,13,16,19-hexa-azabicyclo[6.6.6]icosane) have further confirmed not only that the form of the metal ion/sar unit is unique for each metal, albeit with a sensitivity of the conformation to the associated counter anions, but also that for any given metal and ligand substituent, the dimensions (bond lengths and angles) of the complex and the substituent at the secondary nitrogen centres do not differ significantly from those of the isolated components. Despite this, where the substituent contains reactive sites, the reactivity differs markedly from that of their form in an uncoordinated substrate. Rationalisations are offered for these differences, in part through the use of Hirshfeld surface analysis of the intermolecular interactions. The kinetic inertness of the complexes means that the metal ions can be considered to act as regioselective protecting groups.

4.
Int J Mol Sci ; 23(18)2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36142627

ABSTRACT

Neuroinflammation has a major role in several brain disorders including Alzheimer's disease (AD), yet at present there are no effective anti-neuroinflammatory therapeutics available. Copper(II) complexes of bis(thiosemicarbazones) (CuII(gtsm) and CuII(atsm)) have broad therapeutic actions in preclinical models of neurodegeneration, with CuII(atsm) demonstrating beneficial outcomes on neuroinflammatory markers in vitro and in vivo. These findings suggest that copper(II) complexes could be harnessed as a new approach to modulate immune function in neurodegenerative diseases. In this study, we examined the anti-neuroinflammatory action of several low-molecular-weight, charge-neutral and lipophilic copper(II) complexes. Our analysis revealed that one compound, a thiosemicarbazone-pyridylhydrazone copper(II) complex (CuL5), delivered copper into cells in vitro and increased the concentration of copper in the brain in vivo. In a primary murine microglia culture, CuL5 was shown to decrease secretion of pro-inflammatory cytokine macrophage chemoattractant protein 1 (MCP-1) and expression of tumor necrosis factor alpha (Tnf), increase expression of metallothionein (Mt1), and modulate expression of Alzheimer's disease-associated risk genes, Trem2 and Cd33. CuL5 also improved the phagocytic function of microglia in vitro. In 5xFAD model AD mice, treatment with CuL5 led to an improved performance in a spatial working memory test, while, interestingly, increased accumulation of amyloid plaques in treated mice. These findings demonstrate that CuL5 can induce anti-neuroinflammatory effects in vitro and provide selective benefit in vivo. The outcomes provide further support for the development of copper-based compounds to modulate neuroinflammation in brain diseases.


Subject(s)
Alzheimer Disease , Thiosemicarbazones , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Chemotactic Factors/metabolism , Coordination Complexes , Copper/metabolism , Disease Models, Animal , Membrane Glycoproteins/metabolism , Metallothionein/metabolism , Mice , Microglia/metabolism , Receptors, Immunologic/metabolism , Thiosemicarbazones/metabolism , Thiosemicarbazones/pharmacology , Tumor Necrosis Factor-alpha/metabolism
5.
J Neurochem ; 162(3): 226-244, 2022 08.
Article in English | MEDLINE | ID: mdl-35304760

ABSTRACT

P-glycoprotein (P-gp) is an efflux transporter at the blood-brain barrier (BBB) that hinders brain access of substrate drugs and clears endogenous molecules such as amyloid beta (Aß) from the brain. As biometals such as copper (Cu) modulate many neuronal signalling pathways linked to P-gp regulation, it was hypothesised that the bis(thiosemicarbazone) (BTSC) Cu-releasing complex, copper II glyoxal bis(4-methyl-3-thiosemicarbazone) (CuII [GTSM]), would enhance P-gp expression and function at the BBB, while copper II diacetyl bis(4-methyl-3-thiosemicarbazone) (CuII [ATSM]), which only releases Cu under hypoxic conditions, would not modulate P-gp expression. Following treatment with 25-250 nM CuII (BTSC)s for 8-48 h, expression of P-gp mRNA and protein in human brain endothelial (hCMEC/D3) cells was assessed by RT-qPCR and Western blot, respectively. P-gp function was assessed by measuring accumulation of the fluorescent P-gp substrate, rhodamine 123 and intracellular Cu levels were quantified by inductively coupled plasma mass spectrometry. Interestingly, CuII (ATSM) significantly enhanced P-gp expression and function 2-fold and 1.3-fold, respectively, whereas CuII (GTSM) reduced P-gp expression 0.5-fold and function by 200%. As both compounds increased intracellular Cu levels, the effect of different BTSC backbones, independent of Cu, on P-gp expression was assessed. However, only the Cu-ATSM complex enhanced P-gp expression and this was mediated partly through activation (1.4-fold) of the extracellular signal-regulated kinase 1 and 2, an outcome that was significantly attenuated in the presence of an inhibitor of the mitogen-activated protein kinase regulatory pathway. Our findings suggest that CuII (ATSM) and CuII (GTSM) have the potential to modulate the expression and function of P-gp at the BBB to impact brain drug delivery and clearance of Aß.


Subject(s)
Copper , Thiosemicarbazones , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Amyloid beta-Peptides/metabolism , Brain/metabolism , Copper/metabolism , Endothelial Cells/metabolism , Humans , Thiosemicarbazones/chemistry , Thiosemicarbazones/pharmacology
6.
Sci Rep ; 11(1): 19392, 2021 09 29.
Article in English | MEDLINE | ID: mdl-34588483

ABSTRACT

The synthetic copper-containing compound, CuATSM, has emerged as one of the most promising drug candidates developed for the treatment of amyotrophic lateral sclerosis (ALS). Multiple studies have reported CuATSM treatment provides therapeutic efficacy in various mouse models of ALS without any observable adverse effects. Moreover, recent results from an open label clinical study suggested that daily oral dosing with CuATSM slows disease progression in patients with both sporadic and familial ALS, providing encouraging support for CuATSM in the treatment of ALS. Here, we assessed CuATSM in high copy SOD1G93A mice on the congenic C57BL/6 background, treating at 100 mg/kg/day by gavage, starting at 70 days of age. This dose in this specific model has not been assessed previously. Unexpectedly, we report a subset of mice initially administered CuATSM exhibited signs of clinical toxicity, that necessitated euthanasia in extremis after 3-51 days of treatment. Following a 1-week washout period, the remaining mice resumed treatment at the reduced dose of 60 mg/kg/day. At this revised dose, treatment with CuATSM slowed disease progression and increased survival relative to vehicle-treated littermates. This work provides the first evidence that CuATSM produces positive disease-modifying outcomes in high copy SOD1G93A mice on a congenic C57BL/6 background. Furthermore, results from the 100 mg/kg/day phase of the study support dose escalation determination of tolerability as a prudent step when assessing treatments in previously unassessed models or genetic backgrounds.


Subject(s)
Amyotrophic Lateral Sclerosis/drug therapy , Neuroprotective Agents/administration & dosage , Organocopper Compounds , Superoxide Dismutase-1/metabolism , Animals , Disease Progression , Female , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Organocopper Compounds/administration & dosage , Organocopper Compounds/adverse effects , Organocopper Compounds/pharmacology
7.
J Nucl Med ; 62(6): 829-832, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33067341

ABSTRACT

Radionuclide therapy targeting prostate-specific membrane antigen (PSMA) is promising for prostate cancer. We previously reported a ligand, 64Cu-CuSarbisPSMA, featuring 2 lysine-ureido-glutamate groups. Here, we report the therapeutic potential of 67Cu-CuSarbisPSMA. Methods: Growth of PSMA-positive xenografts was evaluated after treatment with 67Cu-CuSarbisPSMA or 177Lu-LuPSMA imaging and therapy (I&T). Results: At 13 d after injection, tumor growth was similarly inhibited by the 2 tracers in a dose-dependent manner. Survival was comparable after single (30 MBq) or fractionated (2 × 15 MBq, 2 wk apart) administrations. Conclusion:67Cu-CuSarbisPSMA is efficacious in a PSMA-expressing model of prostate cancer.


Subject(s)
Antigens, Surface/chemistry , Copper Radioisotopes/chemistry , Glutamate Carboxypeptidase II/chemistry , Animals , Cell Line, Tumor , Cell Transformation, Neoplastic , Isotope Labeling , Male , Prostatic Neoplasms/pathology
8.
J Org Chem ; 85(4): 2680-2687, 2020 02 21.
Article in English | MEDLINE | ID: mdl-31971390

ABSTRACT

The Ru(II)-catalyzed amidation of 2-arylpyridines with aryl isocyanates via C-H bond activation is less efficient than described previously, due to the formation of a series of side products, which were readily identified using direct infusion electrospray mass spectrometry and high-performance liquid chromatography-mass spectrometry.

9.
Angew Chem Int Ed Engl ; 58(42): 14991-14994, 2019 10 14.
Article in English | MEDLINE | ID: mdl-31437347

ABSTRACT

Molecules containing lysine-ureido-glutamate functional groups bind to the active site of prostate specific membrane antigen, which is overexpressed in prostate cancer. To prepare copper radiopharmaceuticals for the diagnosis and therapy of prostate cancer, macrobicyclic sarcophagine ligands tethered to either one or two lysine-ureido-glutamate functional groups through an appropriate linker have been prepared. Sarcophagine ligands can be readily radiolabeled with positron-emitting copper-64 at room temperature. The bivalent agent, in which two targeting groups are tethered to a single copper complex, dramatically outperforms the monomeric agent with respect to tumor uptake and retention. The high tumor uptake, low background, and prolonged tumor retention, even at 24 hours post injection, suggest the bivalent agent is a promising diagnostic for prostate cancer and could be used for prospective dosimetry for therapy with a copper-67 variant.


Subject(s)
Copper Radioisotopes/chemistry , Dipeptides/chemistry , Glutamate Carboxypeptidase II/antagonists & inhibitors , Glutamates/chemistry , Prostatic Neoplasms , Radiopharmaceuticals/chemistry , Animals , Antigens, Surface , Binding Sites , Cell Line, Tumor , Copper Radioisotopes/metabolism , Glutamates/pharmacokinetics , Humans , Lysine/analogs & derivatives , Lysine/chemistry , Male , Mice , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/therapy , Protein Binding , Radiopharmaceuticals/pharmacokinetics , Theranostic Nanomedicine , Tissue Distribution , Urea/analogs & derivatives , Urea/chemistry
10.
Inorg Chem ; 58(5): 3382-3395, 2019 Mar 04.
Article in English | MEDLINE | ID: mdl-30785268

ABSTRACT

Amyloid-ß plaques, consisting of aggregated amyloid-ß peptides, are one of the pathological hallmarks of Alzheimer's disease. Copper complexes formed using positron-emitting copper radionuclides that cross the blood-brain barrier and bind to specific molecular targets offer the possibility of noninvasive diagnostic imaging using positron emission tomography. New thiosemicarbazone-pyridylhydrazone based ligands that incorporate pyridyl-benzofuran functional groups designed to bind amyloid-ß plaques have been synthesized. The ligands form stable complexes with copper(II) ( Kd = 10-18 M) and can be radiolabeled with copper-64 at room temperature. Subtle changes to the periphery of the ligand backbone alter the metabolic stability of the complexes in mouse and human liver microsomes, and influenced the ability of the complexes to cross the blood-brain barrier in mice. A lead complex was selected based on possessing the best metabolic stability and brain uptake in mice. Synthesis of this lead complex with isotopically enriched copper-65 allowed us to show that the complex bound to amyloid-ß plaques present in post-mortem human brain tissue using laser ablation-inductively coupled plasma-mass spectrometry. This work provides insight into strategies to target metal complexes to amyloid-ß plaques, and how small modifications to ligands can dramatically alter the metabolic stability of metal complexes as well as their ability to cross the blood-brain barrier.


Subject(s)
Alzheimer Disease/diagnostic imaging , Coordination Complexes/chemistry , Positron-Emission Tomography , Alzheimer Disease/metabolism , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/metabolism , Animals , Binding Sites/drug effects , Coordination Complexes/chemical synthesis , Coordination Complexes/pharmacology , Copper Radioisotopes , Humans , Ligands , Mice , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism , Models, Molecular , Molecular Structure
11.
Front Neurosci ; 12: 668, 2018.
Article in English | MEDLINE | ID: mdl-30319344

ABSTRACT

Background: Neuroinflammation and biometal dyshomeostasis are key pathological features of several neurodegenerative diseases, including Alzheimer's disease (AD). Inflammation and biometals are linked at the molecular level through regulation of metal buffering proteins such as the metallothioneins. Even though the molecular connections between metals and inflammation have been demonstrated, little information exists on the effect of copper modulation on brain inflammation. Methods: We demonstrate the immunomodulatory potential of the copper bis(thiosemicarbazone) complex CuII(atsm) in an neuroinflammatory model in vivo and describe its anti-inflammatory effects on microglia and astrocytes in vitro. Results: By using a sophisticated in vivo magnetic resonance imaging (MRI) approach, we report the efficacy of CuII(atsm) in reducing acute cerebrovascular inflammation caused by peripheral administration of bacterial lipopolysaccharide (LPS). CuII(atsm) also induced anti-inflammatory outcomes in primary microglia [significant reductions in nitric oxide (NO), monocyte chemoattractant protein 1 (MCP-1), and tumor necrosis factor (TNF)] and astrocytes [significantly reduced NO, MCP-1, and interleukin 6 (IL-6)] in vitro. These anti-inflammatory actions were associated with increased cellular copper levels and increased the neuroprotective protein metallothionein-1 (MT1) in microglia and astrocytes. Conclusion: The beneficial effects of CuII(atsm) on the neuroimmune system suggest copper complexes are potential therapeutics for the treatment of neuroinflammatory conditions.

12.
ACS Chem Neurosci ; 9(11): 2731-2740, 2018 11 21.
Article in English | MEDLINE | ID: mdl-29920069

ABSTRACT

Alzheimer's disease (AD) is the leading cause of dementia worldwide accounting for around 70% of all cases. There is currently no treatment for AD beyond symptom management and attempts at developing disease-modifying therapies have yielded very little. These strategies have traditionally targeted the peptide Aß, which is thought to drive pathology. However, the lack of clinical translation of these Aß-centric strategies underscores the need for diverse treatment strategies targeting other aspects of the disease. Metal dyshomeostasis is a common feature of several neurodegenerative diseases such as AD, Parkinson's disease, and frontotemporal dementia, and manipulation of metal homeostasis has been explored as a potential therapeutic avenue for these diseases. The copper ionophore glyoxalbis-[N4-methylthiosemicarbazonato]Cu(II) (CuII(gtsm)) has previously been shown to improve the cognitive deficits seen in an AD animal model; however, the molecular mechanism remained unclear. Here we report that the treatment of two animal tauopathy models (APP/PS1 and rTg4510) with CuII(gtsm) recovers the cognitive deficits seen in both neurodegenerative models. In both models, markers of tau pathology were significantly reduced with CuII(gtsm) treatment, and in the APP/PS1 model, the levels of Aß remained unchanged. Analysis of tau kinases (GSK3ß and CDK5) revealed no drug induced changes; however, both models exhibited a significant increase in the levels of the structural subunit of the tau phosphatase, PP2A. These findings suggest that targeting the tau phosphatase PP2A has therapeutic potential for preventing memory impairments and reducing the tau pathology seen in AD and other tauopathies.


Subject(s)
Cognition/drug effects , Organometallic Compounds/pharmacology , Protein Phosphatase 2/drug effects , Spatial Memory/drug effects , Tauopathies/genetics , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/psychology , Amyloid beta-Protein Precursor/genetics , Animals , Behavior, Animal , Cyclin-Dependent Kinase 5/drug effects , Cyclin-Dependent Kinase 5/metabolism , Disease Models, Animal , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/psychology , Glycogen Synthase Kinase 3 beta/drug effects , Glycogen Synthase Kinase 3 beta/metabolism , Hippocampus/drug effects , Hippocampus/pathology , Humans , Mice , Mice, Transgenic , Mutation , Neurofibrillary Tangles/drug effects , Neurofibrillary Tangles/pathology , Presenilin-1/genetics , Protein Phosphatase 2/metabolism , Tauopathies/metabolism , Tauopathies/psychology , tau Proteins/genetics
13.
J Med Chem ; 61(3): 711-723, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29232129

ABSTRACT

Bis(thiosemicarbazonato)copper(II) complexes are of interest as potential therapeutics for cancer and neurodegenerative diseases as well as imaging agents for positron emission tomography (PET). The cellular uptake of six bis(thiosemcarbazonato)copper(II)complexes derived from glyoxal, with different functional groups Cu(gtsx) where x = different functional groups, was investigated in SKOV-3, HEK293, and HEK293 P-gp cell lines. Treatment of the cells with the copper complexes increased intracellular copper and increased levels of p-ERK due to activation of the Ras-Raf-MEK-ERK pathway. Treatment of SKOV-3 cells with low concentrations (µM) of two of the copper complexes led to trafficking of the endogenous copper transporter ATP7A from the Golgi network to the cell membrane. Experiments in HEK293 and HEK293-P-gp cells suggest that Cu(gtsm) and Cu(gtse) are substrates for the P-gp efflux protein but the complex with a pyrrolidine functional group, Cu(gtspyr), is not. A PET experiment in mice showed that [64Cu]Cu(gtspyr) has reasonable brain uptake but high liver uptake.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Copper-Transporting ATPases/metabolism , Copper/metabolism , Glyoxal/chemistry , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Thiosemicarbazones/chemistry , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Copper/chemistry , HEK293 Cells , Humans , Liver/drug effects , Liver/metabolism , Protein Transport/drug effects
14.
Neurotherapeutics ; 14(2): 519-532, 2017 04.
Article in English | MEDLINE | ID: mdl-28050710

ABSTRACT

Developing new therapies for stroke is urgently needed, as this disease is the leading cause of death and disability worldwide, and the existing treatment is only available for a small subset of patients. The interruption of blood flow to the brain during ischemic stroke launches multiple immune responses, characterized by infiltration of peripheral immune cells, the activation of brain microglial cells, and the accumulation of immune mediators. Copper is an essential trace element that is required for many critical processes in the brain. Copper homeostasis is disturbed in chronic neurodegenerative diseases and altered in stroke patients, and targeted copper delivery has been shown to be protective against chronic neurodegeneration. This study was undertaken to assess whether the copper bis(thiosemicarbazone) complex, CuII(atsm), is beneficial in acute brain injury, in preclinical mouse models of ischemic stroke. We demonstrate that the copper complex CuII(atsm) protects neurons from excitotoxicity and N2a cells from OGD in vitro, and is protective in permanent and transient ischemia models in mice as measured by functional outcome and lesion size. Copper delivery in the ischemic brains modulates the inflammatory response, specifically affecting the myeloid cells. It reduces CD45 and Iba1 immunoreactivity, and alters the morphology of Iba1 positive cells in the ischemic brain. CuII(atsm) also protects endogenous microglia against ischemic insult and reduces the proportion of invading monocytes. These results demonstrate that the copper complex CuII(atsm) is an inflammation-modulating compound with high therapeutic potential in stroke and is a strong candidate for the development of therapies for acute brain injury.


Subject(s)
Brain Ischemia/metabolism , Encephalitis/metabolism , Neurons/drug effects , Neurons/metabolism , Neuroprotective Agents/administration & dosage , Organometallic Compounds/administration & dosage , Stroke/metabolism , Thiosemicarbazones/administration & dosage , Animals , Brain/drug effects , Brain/metabolism , Brain Ischemia/prevention & control , Calcium-Binding Proteins/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Coordination Complexes , Disease Models, Animal , Encephalitis/prevention & control , Leukocyte Common Antigens/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Microfilament Proteins/metabolism , Microglia/drug effects , Microglia/metabolism , Stroke/prevention & control
15.
Dalton Trans ; 44(11): 4901-9, 2015 Mar 21.
Article in English | MEDLINE | ID: mdl-25351329

ABSTRACT

New macrobicyclic cage amine or "sarcophagine" (sar) bifunctional chelators have been synthesised that form copper complexes of exceptional in vivo stability and incorporate isothiocyanate (-NCS) functional groups for conjugation to an antibody. The chelators were synthesised from the methyl-capped complex [Mg(II)(CH3)(NH2)sar](2+). Coordination of Mg(II) within the cavity of the cage amine ligand protects the secondary amine atoms from reacting with the -NCS functional groups. Two different [Mg(II)(NCS-sar)](2+) derivatives were conjugated to the HER2/neu-targeting antibody trastuzumab and the progress of the reaction monitored by electrospray mass spectrometry. The Mg(II) ion was removed from the immunoconjugates under mild conditions (0.1 M citrate buffer, pH 6). Labelling of the (CH3)(p-NCS-Ph)sar-trastuzumab conjugate with (64)Cu(II), a radioisotope suitable for positron emission tomography (PET), was fast (∼5 min) and easily performed at room temperature with high radiochemical purity (>95%). Biodistribution and PET imaging studies in vivo showed that (64)Cu-labelled (CH3)(p-NCS-Ph)sar-trastuzumab maintained high stability under physiological conditions with high and selective uptake in a HER2-positive cancer cell line. The stability of the copper complex and the 12.7 h half-life of the radioisotope allows clear visualisation of tumours out to 48 h.


Subject(s)
Amines/chemistry , Copper Radioisotopes , Immunoconjugates , Isothiocyanates/chemistry , Macrocyclic Compounds/chemistry , Positron-Emission Tomography/methods , Animals , Cell Line, Tumor , Chelating Agents/chemistry , Drug Stability , Humans , Immunoconjugates/chemistry , Immunoconjugates/pharmacokinetics , Isotope Labeling , Magnesium/chemistry , Mammary Neoplasms, Experimental/diagnostic imaging , Mammary Neoplasms, Experimental/metabolism , Mice , Receptor, ErbB-2/metabolism , Trastuzumab/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...