Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
bioRxiv ; 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36945610

ABSTRACT

Introduction: Canonical Correlation Analysis (CCA) and Partial Least Squares Correlation (PLS) detect associations between two data matrices based on computing a linear combination between the two matrices (called latent variables; LVs). These LVs maximize correlation (CCA) and covariance (PLS). These different maximization criteria may render one approach more stable and reproducible than the other when working with brain and behavioural data at the population-level. This study compared the LVs which emerged from CCA and PLS analyses of brain-behaviour relationships from the Adolescent Brain Cognitive Development (ABCD) dataset and examined their stability and reproducibility. Methods: Structural T1-weighted imaging and behavioural data were accessed from the baseline Adolescent Brain Cognitive Development dataset (N > 9000, ages = 9-11 years). The brain matrix consisted of cortical thickness estimates in different cortical regions. The behavioural matrix consisted of 11 subscale scores from the parent-reported Child Behavioral Checklist (CBCL) or 7 cognitive performance measures from the NIH Toolbox. CCA and PLS models were separately applied to the brain-CBCL analysis and brain-cognition analysis. A permutation test was used to assess whether identified LVs were statistically significant. A series of resampling statistical methods were used to assess stability and reproducibility of the LVs. Results: When examining the relationship between cortical thickness and CBCL scores, the first LV was found to be significant across both CCA and PLS models (singular value: CCA = .13, PLS = .39, p < .001). LV1 from the CCA model found that covariation of CBCL scores was linked to covariation of cortical thickness. LV1 from the PLS model identified decreased cortical thickness linked to lower CBCL scores. There was limited evidence of stability or reproducibility of LV1 for both CCA and PLS. When examining the relationship between cortical thickness and cognitive performance, there were 6 significant LVs for both CCA and PLS (p < .01). The first LV showed similar relationships between CCA and PLS and was found to be stable and reproducible (singular value: CCA = .21, PLS = .43, p < .001). Conclusion: CCA and PLS identify different brain-behaviour relationships with limited stability and reproducibility when examining the relationship between cortical thickness and parent-reported behavioural measures. However, both methods identified relatively similar brain-behaviour relationships that were stable and reproducible when examining the relationship between cortical thickness and cognitive performance. The results of the current study suggest that stability and reproducibility of brain-behaviour relationships identified by CCA and PLS are influenced by characteristics of the analyzed sample and the included behavioural measurements when applied to a large pediatric dataset.

2.
Alzheimers Dement (N Y) ; 8(1): e12303, 2022.
Article in English | MEDLINE | ID: mdl-35601598

ABSTRACT

Introduction: Computational brain network modeling using The Virtual Brain (TVB) simulation platform acts synergistically with machine learning (ML) and multi-modal neuroimaging to reveal mechanisms and improve diagnostics in Alzheimer's disease (AD). Methods: We enhance large-scale whole-brain simulation in TVB with a cause-and-effect model linking local amyloid beta (Aß) positron emission tomography (PET) with altered excitability. We use PET and magnetic resonance imaging (MRI) data from 33 participants of the Alzheimer's Disease Neuroimaging Initiative (ADNI3) combined with frequency compositions of TVB-simulated local field potentials (LFP) for ML classification. Results: The combination of empirical neuroimaging features and simulated LFPs significantly outperformed the classification accuracy of empirical data alone by about 10% (weighted F1-score empirical 64.34% vs. combined 74.28%). Informative features showed high biological plausibility regarding the AD-typical spatial distribution. Discussion: The cause-and-effect implementation of local hyperexcitation caused by Aß can improve the ML-driven classification of AD and demonstrates TVB's ability to decode information in empirical data using connectivity-based brain simulation.

3.
eNeuro ; 9(1)2022.
Article in English | MEDLINE | ID: mdl-35105657

ABSTRACT

Following traumatic brain injury (TBI), cognitive impairments manifest through interactions between microscopic and macroscopic changes. On the microscale, a neurometabolic cascade alters neurotransmission, while on the macroscale diffuse axonal injury impacts the integrity of long-range connections. Large-scale brain network modeling allows us to make predictions across these spatial scales by integrating neuroimaging data with biophysically based models to investigate how microscale changes invisible to conventional neuroimaging influence large-scale brain dynamics. To this end, we analyzed structural and functional neuroimaging data from a well characterized sample of 44 adult TBI patients recruited from a regional trauma center, scanned at 1-2 weeks postinjury, and with follow-up behavioral outcome assessed 6 months later. Thirty-six age-matched healthy adults served as comparison participants. Using The Virtual Brain, we fit simulations of whole-brain resting-state functional MRI to the empirical static and dynamic functional connectivity of each participant. Multivariate partial least squares (PLS) analysis showed that patients with acute traumatic intracranial lesions had lower cortical regional inhibitory connection strengths than comparison participants, while patients without acute lesions did not differ from the comparison group. Further multivariate PLS analyses found correlations between lower semiacute regional inhibitory connection strengths and more symptoms and lower cognitive performance at a 6 month follow-up. Critically, patients without acute lesions drove this relationship, suggesting clinical relevance of regional inhibitory connection strengths even when traumatic intracranial lesions were not present. Our results suggest that large-scale connectome-based models may be sensitive to pathophysiological changes in semi-acute phase TBI patients and predictive of their chronic outcomes.


Subject(s)
Brain Injuries, Traumatic , Connectome , Adult , Brain Injuries, Traumatic/diagnostic imaging , Connectome/methods , Follow-Up Studies , Humans , Magnetic Resonance Imaging/methods , Neuroimaging
4.
PLOS Digit Health ; 1(8): e0000098, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36812584

ABSTRACT

During the current COVID-19 pandemic, governments must make decisions based on a variety of information including estimations of infection spread, health care capacity, economic and psychosocial considerations. The disparate validity of current short-term forecasts of these factors is a major challenge to governments. By causally linking an established epidemiological spread model with dynamically evolving psychosocial variables, using Bayesian inference we estimate the strength and direction of these interactions for German and Danish data of disease spread, human mobility, and psychosocial factors based on the serial cross-sectional COVID-19 Snapshot Monitoring (COSMO; N = 16,981). We demonstrate that the strength of cumulative influence of psychosocial variables on infection rates is of a similar magnitude as the influence of physical distancing. We further show that the efficacy of political interventions to contain the disease strongly depends on societal diversity, in particular group-specific sensitivity to affective risk perception. As a consequence, the model may assist in quantifying the effect and timing of interventions, forecasting future scenarios, and differentiating the impact on diverse groups as a function of their societal organization. Importantly, the careful handling of societal factors, including support to the more vulnerable groups, adds another direct instrument to the battery of political interventions fighting epidemic spread.

5.
Front Neuroinform ; 15: 630172, 2021.
Article in English | MEDLINE | ID: mdl-33867964

ABSTRACT

Despite the acceleration of knowledge and data accumulation in neuroscience over the last years, the highly prevalent neurodegenerative disease of AD remains a growing problem. Alzheimer's Disease (AD) is the most common cause of dementia and represents the most prevalent neurodegenerative disease. For AD, disease-modifying treatments are presently lacking, and the understanding of disease mechanisms continues to be incomplete. In the present review, we discuss candidate contributing factors leading to AD, and evaluate novel computational brain simulation methods to further disentangle their potential roles. We first present an overview of existing computational models for AD that aim to provide a mechanistic understanding of the disease. Next, we outline the potential to link molecular aspects of neurodegeneration in AD with large-scale brain network modeling using The Virtual Brain (www.thevirtualbrain.org), an open-source, multiscale, whole-brain simulation neuroinformatics platform. Finally, we discuss how this methodological approach may contribute to the understanding, improved diagnostics, and treatment optimization of AD.

6.
Netw Neurosci ; 4(1): 30-69, 2020.
Article in English | MEDLINE | ID: mdl-32043043

ABSTRACT

The brain is a complex, multiscale dynamical system composed of many interacting regions. Knowledge of the spatiotemporal organization of these interactions is critical for establishing a solid understanding of the brain's functional architecture and the relationship between neural dynamics and cognition in health and disease. The possibility of studying these dynamics through careful analysis of neuroimaging data has catalyzed substantial interest in methods that estimate time-resolved fluctuations in functional connectivity (often referred to as "dynamic" or time-varying functional connectivity; TVFC). At the same time, debates have emerged regarding the application of TVFC analyses to resting fMRI data, and about the statistical validity, physiological origins, and cognitive and behavioral relevance of resting TVFC. These and other unresolved issues complicate interpretation of resting TVFC findings and limit the insights that can be gained from this promising new research area. This article brings together scientists with a variety of perspectives on resting TVFC to review the current literature in light of these issues. We introduce core concepts, define key terms, summarize controversies and open questions, and present a forward-looking perspective on how resting TVFC analyses can be rigorously and productively applied to investigate a wide range of questions in cognitive and systems neuroscience.

7.
Front Comput Neurosci ; 14: 575143, 2020.
Article in English | MEDLINE | ID: mdl-33408622

ABSTRACT

Rhythmic activity in the brain fluctuates with behaviour and cognitive state, through a combination of coexisting and interacting frequencies. At large spatial scales such as those studied in human M/EEG, measured oscillatory dynamics are believed to arise primarily from a combination of cortical (intracolumnar) and corticothalamic rhythmogenic mechanisms. Whilst considerable progress has been made in characterizing these two types of neural circuit separately, relatively little work has been done that attempts to unify them into a single consistent picture. This is the aim of the present paper. We present and examine a whole-brain, connectome-based neural mass model with detailed long-range cortico-cortical connectivity and strong, recurrent corticothalamic circuitry. This system reproduces a variety of known features of human M/EEG recordings, including spectral peaks at canonical frequencies, and functional connectivity structure that is shaped by the underlying anatomical connectivity. Importantly, our model is able to capture state- (e.g., idling/active) dependent fluctuations in oscillatory activity and the coexistence of multiple oscillatory phenomena, as well as frequency-specific modulation of functional connectivity. We find that increasing the level of sensory drive to the thalamus triggers a suppression of the dominant low frequency rhythms generated by corticothalamic loops, and subsequent disinhibition of higher frequency endogenous rhythmic behaviour of intracolumnar microcircuits. These combine to yield simultaneous decreases in lower frequency and increases in higher frequency components of the M/EEG power spectrum during states of high sensory or cognitive drive. Building on this, we also explored the effect of pulsatile brain stimulation on ongoing oscillatory activity, and evaluated the impact of coexistent frequencies and state-dependent fluctuations on the response of cortical networks. Our results provide new insight into the role played by cortical and corticothalamic circuits in shaping intrinsic brain rhythms, and suggest new directions for brain stimulation therapies aimed at state-and frequency-specific control of oscillatory brain activity.

8.
Front Comput Neurosci ; 13: 54, 2019.
Article in English | MEDLINE | ID: mdl-31456676

ABSTRACT

Introduction: While the prevalence of neurodegenerative diseases associated with dementia such as Alzheimer's disease (AD) increases, our knowledge on the underlying mechanisms, outcome predictors, or therapeutic targets is limited. In this work, we demonstrate how computational multi-scale brain modeling links phenomena of different scales and therefore identifies potential disease mechanisms leading the way to improved diagnostics and treatment. Methods: The Virtual Brain (TVB; thevirtualbrain.org) neuroinformatics platform allows standardized large-scale structural connectivity-based simulations of whole brain dynamics. We provide proof of concept for a novel approach that quantitatively links the effects of altered molecular pathways onto neuronal population dynamics. As a novelty, we connect chemical compounds measured with positron emission tomography (PET) with neural function in TVB addressing the phenomenon of hyperexcitability in AD related to the protein amyloid beta (Abeta). We construct personalized virtual brains based on an averaged healthy connectome and individual PET derived distributions of Abeta in patients with mild cognitive impairment (MCI, N = 8) and Alzheimer's Disease (AD, N = 10) and in age-matched healthy controls (HC, N = 15) using data from ADNI-3 data base (http://adni.loni.usc.edu). In the personalized virtual brains, individual Abeta burden modulates regional Excitation-Inhibition balance, leading to local hyperexcitation with high Abeta loads. We analyze simulated regional neural activity and electroencephalograms (EEG). Results: Known empirical alterations of EEG in patients with AD compared to HCs were reproduced by simulations. The virtual AD group showed slower frequencies in simulated local field potentials and EEG compared to MCI and HC groups. The heterogeneity of the Abeta load is crucial for the virtual EEG slowing which is absent for control models with homogeneous Abeta distributions. Slowing phenomena primarily affect the network hubs, independent of the spatial distribution of Abeta. Modeling the N-methyl-D-aspartate (NMDA) receptor antagonism of memantine in local population models, reveals potential functional reversibility of the observed large-scale alterations (reflected by EEG slowing) in virtual AD brains. Discussion: We demonstrate how TVB enables the simulation of systems effects caused by pathogenetic molecular candidate mechanisms in human virtual brains.

9.
Elife ; 72018 01 08.
Article in English | MEDLINE | ID: mdl-29308767

ABSTRACT

The neurophysiological processes underlying non-invasive brain activity measurements are incompletely understood. Here, we developed a connectome-based brain network model that integrates individual structural and functional data with neural population dynamics to support multi-scale neurophysiological inference. Simulated populations were linked by structural connectivity and, as a novelty, driven by electroencephalography (EEG) source activity. Simulations not only predicted subjects' individual resting-state functional magnetic resonance imaging (fMRI) time series and spatial network topologies over 20 minutes of activity, but more importantly, they also revealed precise neurophysiological mechanisms that underlie and link six empirical observations from different scales and modalities: (1) resting-state fMRI oscillations, (2) functional connectivity networks, (3) excitation-inhibition balance, (4, 5) inverse relationships between α-rhythms, spike-firing and fMRI on short and long time scales, and (6) fMRI power-law scaling. These findings underscore the potential of this new modelling framework for general inference and integration of neurophysiological knowledge to complement empirical studies.


Subject(s)
Brain/anatomy & histology , Brain/physiology , Models, Neurological , Nerve Net/anatomy & histology , Nerve Net/physiology , Adult , Aged , Computer Simulation , Electroencephalography , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Young Adult
10.
Cereb Cortex ; 27(3): 1748-1757, 2017 03 01.
Article in English | MEDLINE | ID: mdl-26656723

ABSTRACT

Adaptation learning is crucial to maintain precise motor control in face of environmental perturbations. Although much progress has been made in understanding the psychophysics and neurophysiology of sensorimotor adaptation (SA), the time course of memory consolidation remains elusive. The lack of a reproducible gradient of memory resistance using protocols of retrograde interference has even led to the proposal that memories produced through SA do not consolidate. Here, we pursued an alternative approach using resting-state fMRI to track changes in functional connectivity (FC) induced by learning. Given that consolidation leads to long-term memory, we hypothesized that a change in FC that predicted long-term memory but not short-term memory would provide indirect evidence for memory stabilization. Six scans were acquired before, 15 min, 1, 3, 5.5, and 24 h after training on a center-out task under veridical or distorted visual feedback. The experimental group showed an increment in FC of a network including motor, premotor, posterior parietal cortex, cerebellum, and putamen that peaked at 5.5 h. Crucially, the strengthening of this network correlated positively with long-term retention but negatively with short-term retention. Our work provides evidence, suggesting that adaptation memories stabilize within a 6-h window, and points to different mechanisms subserving short- and long-term memory.


Subject(s)
Adaptation, Physiological/physiology , Brain/physiology , Feedback, Sensory/physiology , Memory/physiology , Motor Activity/physiology , Visual Perception/physiology , Brain/diagnostic imaging , Brain Mapping , Female , Humans , Learning/physiology , Magnetic Resonance Imaging , Male , Neural Pathways/diagnostic imaging , Neural Pathways/physiology , Neuropsychological Tests , Psychophysics , Random Allocation , Rest , Time Factors , Young Adult
11.
Hum Brain Mapp ; 37(11): 3911-3928, 2016 11.
Article in English | MEDLINE | ID: mdl-27353970

ABSTRACT

Current neuroscientific research has shown that the brain reconfigures its functional interactions at multiple timescales. Here, we sought to link transient changes in functional brain networks to individual differences in behavioral and cognitive performance by using an active learning paradigm. Participants learned associations between pairs of unrelated visual stimuli by using feedback. Interindividual behavioral variability was quantified with a learning rate measure. By using a multivariate statistical framework (partial least squares), we identified patterns of network organization across multiple temporal scales (within a trial, millisecond; across a learning session, minute) and linked these to the rate of change in behavioral performance (fast and slow). Results indicated that posterior network connectivity was present early in the trial for fast, and later in the trial for slow performers. In contrast, connectivity in an associative memory network (frontal, striatal, and medial temporal regions) occurred later in the trial for fast, and earlier for slow performers. Time-dependent changes in the posterior network were correlated with visual/spatial scores obtained from independent neuropsychological assessments, with fast learners performing better on visual/spatial subtests. No relationship was found between functional connectivity dynamics in the memory network and visual/spatial test scores indicative of cognitive skill. By using a comprehensive set of measures (behavioral, cognitive, and neurophysiological), we report that individual variations in learning-related performance change are supported by differences in cognitive ability and time-sensitive connectivity in functional neural networks. Hum Brain Mapp 37:3911-3928, 2016. © 2016 Wiley Periodicals, Inc.


Subject(s)
Association Learning/physiology , Brain/physiology , Individuality , Pattern Recognition, Visual/physiology , Adult , Brain Mapping/methods , Choice Behavior/physiology , Feedback, Psychological/physiology , Female , Humans , Learning Curve , Least-Squares Analysis , Magnetoencephalography , Male , Multivariate Analysis , Neural Pathways/physiology , Neuropsychological Tests , Principal Component Analysis , Reaction Time , Young Adult
12.
Neuroimage Clin ; 10: 159-71, 2016.
Article in English | MEDLINE | ID: mdl-26759790

ABSTRACT

Learning impairment is a core deficit in schizophrenia that impacts on real-world functioning and yet, elucidating its underlying neural basis remains a challenge. A key issue when interpreting learning-task experiments is that task-independent changes may confound interpretation of task-related signal changes in neuroimaging studies. The nature of these task-independent changes in schizophrenia is unknown. Therefore, we examined task-independent "time effects" in a group of participants with schizophrenia contrasted with healthy participants in a longitudinal fMRI learning-experiment designed to allow for examination of non-specific effects of time. Flanking the learning portions of the experiment with a task-of-no-interest allowed us to extract task-independent BOLD changes. Task-independent effects occurred in both groups, but were more robust in the schizophrenia group. There was a significant interaction effect between group and time in a distributed activity pattern that included inferior and superior temporal regions, frontal areas (left anterior insula and superior medial gyri), and parietal areas (posterior cingulate cortices and precuneus). This pattern showed task-independent linear decrease in BOLD amplitude over the two scanning sessions for the schizophrenia group, but showed either opposite effect or no activity changes for the control group. There was a trend towards a correlation between task-independent effects and the presence of more negative symptoms in the schizophrenia group. The strong interaction between group and time suggests that both the scanning experience as a whole and the transition between task-types evokes a different response in persons with schizophrenia and may confound interpretation of learning-related longitudinal imaging experiments if not explicitly considered.


Subject(s)
Brain/physiopathology , Learning Curve , Learning/physiology , Schizophrenia/physiopathology , Schizophrenic Psychology , Adult , Brain Mapping , Female , Humans , Longitudinal Studies , Magnetic Resonance Imaging , Male , Time Factors
13.
Front Psychiatry ; 7: 212, 2016.
Article in English | MEDLINE | ID: mdl-28167919

ABSTRACT

BACKGROUND: Understanding how practice mediates the transition of brain-behavior networks between early and later stages of learning is constrained by the common approach to analysis of fMRI data. Prior imaging studies have mostly relied on a single scan, and parametric, task-related analyses. Our experiment incorporates a multisession fMRI lexicon-learning experiment with multivariate, whole-brain analysis to further knowledge of the distributed networks supporting practice-related learning in schizophrenia (SZ). METHODS: Participants with SZ were compared with healthy control (HC) participants as they learned a novel lexicon during two fMRI scans over a several day period. All participants were trained to equal task proficiency prior to scanning. Behavioral-Partial Least Squares, a multivariate analytic approach, was used to analyze the imaging data. Permutation testing was used to determine statistical significance and bootstrap resampling to determine the reliability of the findings. RESULTS: With practice, HC participants transitioned to a brain-accuracy network incorporating dorsostriatal regions in late-learning stages. The SZ participants did not transition to this pattern despite comparable behavioral results. Instead, successful learners with SZ were differentiated primarily on the basis of greater engagement of perceptual and perceptual-integration brain regions. CONCLUSION: There is a different spatiotemporal unfolding of brain-learning relationships in SZ. In SZ, given the same amount of practice, the movement from networks suggestive of effortful learning toward subcortically driven procedural one differs from HC participants. Learning performance in SZ is driven by varying levels of engagement in perceptual regions, which suggests perception itself is impaired and may impact downstream, "higher level" cognition.

14.
Cereb Cortex ; 26(9): 3851-65, 2016 09.
Article in English | MEDLINE | ID: mdl-26315689

ABSTRACT

Aging is associated with decreased resting-state functional connectivity (RSFC) within the default mode network (DMN), but most functional imaging studies have restricted the analysis to specific brain regions or networks, a strategy not appropriate to describe system-wide changes. Moreover, few investigations have employed operational psychiatric interviewing procedures to select participants; this is an important limitation since mental disorders are prevalent and underdiagnosed and can be associated with RSFC abnormalities. In this study, resting-state fMRI was acquired from 59 adults free of cognitive and psychiatric disorders according to standardized criteria and based on extensive neuropsychological and clinical assessments. We tested for associations between age and whole-brain RSFC using Partial Least Squares, a multivariate technique. We found that normal aging is not only characterized by decreased RSFC within the DMN but also by ubiquitous increases in internetwork positive correlations and focal internetwork losses of anticorrelations (involving mainly connections between the DMN and the attentional networks). Our results reinforce the notion that the aging brain undergoes a dedifferentiation processes with loss of functional diversity. These findings advance the characterization of healthy aging effects on RSFC and highlight the importance of adopting a broad, system-wide perspective to analyze brain connectivity.


Subject(s)
Aging/pathology , Aging/physiology , Brain/anatomy & histology , Brain/physiology , Connectome/methods , Adolescent , Adult , Aged , Cognition Disorders/pathology , Cognition Disorders/physiopathology , Female , Humans , Male , Mental Disorders/pathology , Mental Disorders/physiopathology , Middle Aged , Nerve Net/anatomy & histology , Nerve Net/physiology , Neural Pathways/anatomy & histology , Neural Pathways/physiology , Reference Values , Rest/physiology , Young Adult
15.
Front Neuroinform ; 9: 27, 2015.
Article in English | MEDLINE | ID: mdl-26635597

ABSTRACT

The Virtual Brain (TVB; thevirtualbrain.org) is a neuroinformatics platform for full brain network simulation based on individual anatomical connectivity data. The framework addresses clinical and neuroscientific questions by simulating multi-scale neural dynamics that range from local population activity to large-scale brain function and related macroscopic signals like electroencephalography and functional magnetic resonance imaging. TVB is equipped with a graphical and a command-line interface to create models that capture the characteristic biological variability to predict the brain activity of individual subjects. To enable researchers from various backgrounds a quick start into TVB and brain network modeling in general, we developed an educational module: TVB-EduPack. EduPack offers two educational functionalities that seamlessly integrate into TVB's graphical user interface (GUI): (i) interactive tutorials introduce GUI elements, guide through the basic mechanics of software usage and develop complex use-case scenarios; animations, videos and textual descriptions transport essential principles of computational neuroscience and brain modeling; (ii) an automatic script generator records model parameters and produces input files for TVB's Python programming interface; thereby, simulation configurations can be exported as scripts that allow flexible customization of the modeling process and self-defined batch- and post-processing applications while benefitting from the full power of the Python language and its toolboxes. This article covers the implementation of TVB-EduPack and its integration into TVB architecture. Like TVB, EduPack is an open source community project that lives from the participation and contribution of its users. TVB-EduPack can be obtained as part of TVB from thevirtualbrain.org.

16.
PLoS One ; 10(7): e0130129, 2015.
Article in English | MEDLINE | ID: mdl-26154513

ABSTRACT

While human brains are specialized for complex and variable real world tasks, most neuroscience studies reduce environmental complexity, which limits the range of behaviours that can be explored. Motivated to overcome this limitation, we conducted a large-scale experiment with electroencephalography (EEG) based brain-computer interface (BCI) technology as part of an immersive multi-media science-art installation. Data from 523 participants were collected in a single night. The exploratory experiment was designed as a collective computer game where players manipulated mental states of relaxation and concentration with neurofeedback targeting modulation of relative spectral power in alpha and beta frequency ranges. Besides validating robust time-of-night effects, gender differences and distinct spectral power patterns for the two mental states, our results also show differences in neurofeedback learning outcome. The unusually large sample size allowed us to detect unprecedented speed of learning changes in the power spectrum (~ 1 min). Moreover, we found that participants' baseline brain activity predicted subsequent neurofeedback beta training, indicating state-dependent learning. Besides revealing these training effects, which are relevant for BCI applications, our results validate a novel platform engaging art and science and fostering the understanding of brains under natural conditions.


Subject(s)
Art , Brain-Computer Interfaces , Electroencephalography/methods , Music , Neurofeedback/methods , Adolescent , Adult , Aged , Aged, 80 and over , Brain/physiology , Cognition , Female , Humans , Imagination , Learning , Male , Middle Aged , Multivariate Analysis , Relaxation , Software , Video Games , Young Adult
17.
Neuroimage ; 117: 343-57, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-25837600

ABSTRACT

Large amounts of multimodal neuroimaging data are acquired every year worldwide. In order to extract high-dimensional information for computational neuroscience applications standardized data fusion and efficient reduction into integrative data structures are required. Such self-consistent multimodal data sets can be used for computational brain modeling to constrain models with individual measurable features of the brain, such as done with The Virtual Brain (TVB). TVB is a simulation platform that uses empirical structural and functional data to build full brain models of individual humans. For convenient model construction, we developed a processing pipeline for structural, functional and diffusion-weighted magnetic resonance imaging (MRI) and optionally electroencephalography (EEG) data. The pipeline combines several state-of-the-art neuroinformatics tools to generate subject-specific cortical and subcortical parcellations, surface-tessellations, structural and functional connectomes, lead field matrices, electrical source activity estimates and region-wise aggregated blood oxygen level dependent (BOLD) functional MRI (fMRI) time-series. The output files of the pipeline can be directly uploaded to TVB to create and simulate individualized large-scale network models that incorporate intra- and intercortical interaction on the basis of cortical surface triangulations and white matter tractograpy. We detail the pitfalls of the individual processing streams and discuss ways of validation. With the pipeline we also introduce novel ways of estimating the transmission strengths of fiber tracts in whole-brain structural connectivity (SC) networks and compare the outcomes of different tractography or parcellation approaches. We tested the functionality of the pipeline on 50 multimodal data sets. In order to quantify the robustness of the connectome extraction part of the pipeline we computed several metrics that quantify its rescan reliability and compared them to other tractography approaches. Together with the pipeline we present several principles to guide future efforts to standardize brain model construction. The code of the pipeline and the fully processed data sets are made available to the public via The Virtual Brain website (thevirtualbrain.org) and via github (https://github.com/BrainModes/TVB-empirical-data-pipeline). Furthermore, the pipeline can be directly used with High Performance Computing (HPC) resources on the Neuroscience Gateway Portal (http://www.nsgportal.org) through a convenient web-interface.


Subject(s)
Brain/anatomy & histology , Brain/physiology , Connectome/methods , Electroencephalography/methods , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Models, Neurological , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Multimodal Imaging , Young Adult
18.
Trends Cogn Sci ; 19(2): 86-91, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25534332

ABSTRACT

Music has always played a central role in human culture. The question of how musical sounds can have such profound emotional and rewarding effects has been a topic of interest throughout generations. At a fundamental level, listening to music involves tracking a series of sound events over time. Because humans are experts in pattern recognition, temporal predictions are constantly generated, creating a sense of anticipation. We summarize how complex cognitive abilities and cortical processes integrate with fundamental subcortical reward and motivation systems in the brain to give rise to musical pleasure. This work builds on previous theoretical models that emphasize the role of prediction in music appreciation by integrating these ideas with recent neuroscientific evidence.


Subject(s)
Anticipation, Psychological/physiology , Auditory Perception/physiology , Brain/physiology , Music , Pleasure/physiology , Reward , Dopamine/metabolism , Humans
19.
Brain Connect ; 4(10): 791-811, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25131838

ABSTRACT

Spontaneous brain activity, that is, activity in the absence of controlled stimulus input or an explicit active task, is topologically organized in multiple functional networks (FNs) maintaining a high degree of coherence. These "resting state networks" are constrained by the underlying anatomical connectivity between brain areas. They are also influenced by the history of task-related activation. The precise rules that link plastic changes and ongoing dynamics of resting-state functional connectivity (rs-FC) remain unclear. Using the framework of the open source neuroinformatics platform "The Virtual Brain," we identify potential computational mechanisms that alter the dynamical landscape, leading to reconfigurations of FNs. Using a spiking neuron model, we first demonstrate that network activity in the absence of plasticity is characterized by irregular oscillations between low-amplitude asynchronous states and high-amplitude synchronous states. We then demonstrate the capability of spike-timing-dependent plasticity (STDP) combined with intrinsic alpha (8-12 Hz) oscillations to efficiently influence learning. Further, we show how alpha-state-dependent STDP alters the local area dynamics from an irregular to a highly periodic alpha-like state. This is an important finding, as the cortical input from the thalamus is at the rate of alpha. We demonstrate how resulting rhythmic cortical output in this frequency range acts as a neuronal tuner and, hence, leads to synchronization or de-synchronization between brain areas. Finally, we demonstrate that locally restricted structural connectivity changes influence local as well as global dynamics and lead to altered rs-FC.


Subject(s)
Alpha Rhythm/physiology , Cerebral Cortex/physiology , Models, Neurological , Nerve Net/physiology , Neuronal Plasticity/physiology , Neurons/physiology , Action Potentials/physiology , Computer Simulation , Humans , Neural Networks, Computer , Rest , Software
20.
Neuroimage ; 78: 284-94, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23603349

ABSTRACT

Beamformers are one of the most common inverse models currently used in the estimation of source activity from magnetoencephelography (MEG) data. They rely on a minimization of total power while constraining the gain in the voxel of interest, resulting in the suppression of background noise. Nonetheless, in cases where background noise is strong compared to the source of interest, or when many sources are present, the ability of the beamformer to detect and accurately localize weak sources is reduced. In visual paradigms, two main background sources can substantially impact an accurate estimation of weaker sources. Ocular artifacts are orders of magnitude higher than neural sources making it difficult for the beamformer to effectively suppress them. Primary visual activations also result in strong signals that can impede localization of weak sources. In this paper, we systematically evaluated how neural (visual) and non-neural (eye, heart) sources affect the localization accuracy of frontal and medial temporal sources in visual tasks. These sources are of tremendous interest in learning and memory studies as well as in clinical settings (Alzheimer's/epilepsy) and are typically difficult to localize robustly in MEG. Empirical data from two tasks - active learning and control - were used to evaluate our analysis techniques. Global field power calculations showed multiple time periods where active learning was significantly different from response selection with dominant sources converging to the eyes. Extensive leakage of eye activity into frontal and visual that evoked responses into parietal cortices was also observed. Contributions from ocular activity to the reconstructed time series were indiscernible from task-based recruitment of frontal sources in the original data. Removing artifacts (eye movements, cardiac, and muscular) by means of independent component analysis (ICA) led to a significant improvement in detection and localization of frontal and medial temporal sources. We verified our results by using simulations of sources placed in frontal and medial temporal regions with various types of background noise (eye, heart, and visual). We report that the detection and localization accuracy of frontal and medial temporal sources with beamformer techniques is highly dependent on the magnitude and location of background sources and that removing artifacts can substantially improve the beamformer's performance.


Subject(s)
Artifacts , Brain Mapping/methods , Brain/physiology , Magnetoencephalography/methods , Signal Processing, Computer-Assisted , Adult , Female , Humans , Male , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...