Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 12854, 2019 09 06.
Article in English | MEDLINE | ID: mdl-31492886

ABSTRACT

Amniotic membrane (AM) is used to treat a range of ophthalmic indications but must be presented in a non-contaminated state. AM from elective caesarean sections contains natural microbial contamination, requiring removal during processing protocols. The aim of this study was to assess the ability of antibiotic decontamination of AM, during processing by innovative low-temperature vacuum-drying. Bioburden of caesarean section AM was assessed, and found to be present in low levels. Subsequently, the process for producing vacuum-dried AM (VDAM) was assessed for decontamination ability, by artificially loading with Staphylococcus epidermidis at different stages of processing. The protocol was highly efficient at removing bioburden introduced at any stage of processing, with antibiotic treatment and drying the most efficacious steps. The antibacterial activity of non-antibiotic treated AM compared to VDAM was evaluated using minimum inhibitory/biocidal concentrations (MIC/MBC), and disc diffusion assays against Meticillin-resistant Staphylococcus aureus, Meticillin-resistant S. epidermidis, Escherichia coli, Pseudomonas aeruginosa and Enterococcus faecalis. Antibacterial activity without antibiotic was low, confirmed by high MIC/MBC, and a no inhibition on agar lawns. However, VDAM with antibiotic demonstrated effective antibacterial capacity against all bacteria. Therefore, antibiotic decontamination is a reliable method for sterilisation of AM and the resultant antibiotic reservoir is effective against gram-positive and -negative bacteria.


Subject(s)
Amnion/drug effects , Anti-Bacterial Agents/pharmacology , Decontamination , Vacuum , Amnion/microbiology , Colony Count, Microbial , Humans , Microbial Sensitivity Tests , Raffinose/pharmacology , Reproducibility of Results , Staphylococcus epidermidis/drug effects , Staphylococcus epidermidis/growth & development , Sterilization
2.
World J Stem Cells ; 11(2): 84-99, 2019 Feb 26.
Article in English | MEDLINE | ID: mdl-30842807

ABSTRACT

BACKGROUND: An in vitro injury model mimicking a corneal surface injury was optimised using human corneal epithelial cells (hCEC). AIM: To investigate whether corneal-stroma derived stem cells (CSSC) seeded on an amniotic membrane (AM) construct manifests an anti-inflammatory, healing response. METHODS: Treatment of hCEC with ethanol and pro-inflammatory cytokines were compared in terms of viability loss, cytotoxicity, and pro-inflammatory cytokine release, in order to generate the in vitro injury. This resulted in an optimal injury of 20% (v/v) ethanol for 30 s with 1 ng/mL interleukin-1 (IL-1) beta. Co-culture experiments were performed with CSSC alone and with CSSC-AM constructs. The effect of injury and co-culture on viability, cytotoxicity, IL-6 and IL-8 production, and IL1B, TNF, IL6, and CXCL8 mRNA expression were assessed. RESULTS: Co-culture with CSSC inhibited loss of hCEC viability caused by injury. Enzyme linked immunosorbent assay and polymerase chain reaction showed a significant reduction in the production of IL-6 and IL-8 pro-inflammatory cytokines, and reduction in pro-inflammatory cytokine mRNA expression during co-culture with CSSC alone and with the AM construct. These results confirmed the therapeutic potential of the CSSC and the possible use of AM as a cell carrier for application to the ocular surface. CONCLUSION: CSSC were shown to have a potentially therapeutic anti-inflammatory effect when treating injured hCEC, demonstrating an important role in corneal regeneration and wound healing, leading to an improved knowledge of their potential use for research and therapeutic purposes.

3.
Invest Ophthalmol Vis Sci ; 56(12): 7225-35, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26544791

ABSTRACT

PURPOSE: Cells of the corneal epithelium and stroma can be distinguished in vivo by different intermediate filaments, cytokeratins for corneal epithelial cells (CEC) and vimentin for keratocytes. Isolated and cultured keratocytes change phenotype, losing expression of keratocyte markers and gaining markers associated with mesenchymal stromal cells (MSC). This study investigates this change in phenotype in relation to intermediate filament expression in cultured corneal stromal cells (CSC) compared to CEC. METHODS: Expression of epithelial markers (CK3, CK12, CK19, pan cytokeratin, E-cadherin), keratocyte markers (CD34, vimentin), and MSC markers (CD73, CD90, and CD105) were compared in CEC and CSC by immunocytochemistry and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Expression was evaluated at different stages of CSC culture and compared to another stromal cell type, extracted from Wharton's jelly (WJ-MSC). RESULTS: In vivo keratocytes did not express cytokeratins. However, cultured CSC expressed epithelial-associated CK3, CK12, and CK19, but not other cytokeratins. Expression of cytokeratins increased as CSC were passaged and decreased as CSC were induced to become quiescent. Comparatively, WJ-MSC expressed lower levels of CK3, CK12, and CK19, but also stained for pan cytokeratin and expressed KRT5. CONCLUSIONS: Cultured CSC undergo phenotypic change during culture, expressing specific cytokeratin filaments normally associated with CEC. Cytokeratin expression begins as cells are cultured on plastic and increases with passage. This discovery may influence the way in which differences are discerned between cultured CEC and CSC. Investigators need to be aware that the expression of cytokeratins does not necessarily represent epithelial contamination, and that CEC and CSC may be more related than previously recognized.


Subject(s)
Corneal Stroma/metabolism , DNA/genetics , Gene Expression Regulation , Keratins/genetics , Mesenchymal Stem Cells/cytology , Cell Culture Techniques , Cell Differentiation , Cells, Cultured , Corneal Stroma/cytology , Humans , Immunohistochemistry , Keratins/biosynthesis , Mesenchymal Stem Cells/metabolism , Phenotype , Reverse Transcriptase Polymerase Chain Reaction
4.
PLoS One ; 8(10): e78441, 2013.
Article in English | MEDLINE | ID: mdl-24205233

ABSTRACT

PURPOSE: Dried amniotic membrane (AM) can be a useful therapeutic adjunct in ophthalmic surgery and possesses logistical advantages over cryopreserved AM. Differences in preservation techniques can significantly influence the biochemical composition and physical properties of AM, potentially affecting clinical efficacy. This study was established to investigate the biochemical and structural effects of drying AM in the absence and presence of saccharide lyoprotectants and its biocompatibility compared to cryopreserved material. METHODS: AM was cryopreserved or dried with and without pre-treatment with trehalose or raffinose and the antioxidant epigallocatechin (EGCG). Structural and visual comparisons were assessed using electron microscopy. Localisation, expression and release of AM biological factors were determined using immunoassays and immunofluorescence. The biocompatibility of the AM preparations co-cultured with corneal epithelial cell (CEC) or keratocyte monolayers were assessed using cell proliferation, cytotoxicity, apoptosis and migration assays. RESULTS: Drying devitalised AM epithelium, but less than cryopreservation and cellular damage was reduced in dried AM pre-treated with trehalose or raffinose. Dried AM alone, and with trehalose or raffinose showed greater factor retention efficiencies and bioavailability compared to cryopreserved AM and demonstrated a more sustained biochemical factor time release in vitro. Cellular health assays showed that dried AM with trehalose or raffinose are compatible and superior substrates compared to cryopreserved AM for primary CEC expansion, with increased proliferation and reduced LDH and caspase-3 levels. This concept was supported by improved wound healing in an immortalised human CEC line (hiCEC) co-cultured with dried and trehalose or raffinose membranes, compared to cryopreserved and fresh AM. CONCLUSIONS: Our modified preservation process and our resultant optimised dried AM has enhanced structural properties and biochemical stability and is a superior substrate to conventional cryopreserved AM. In addition this product is stable and easily transportable allowing it to be globally wide reaching for use in clinical and military sectors.


Subject(s)
Amnion/physiology , Biological Dressings , Cornea/physiology , Corneal Keratocytes/physiology , Adult , Antioxidants/pharmacology , Apoptosis/drug effects , Caspase 3/metabolism , Catechin/analogs & derivatives , Catechin/pharmacology , Cell Line , Cell Movement/drug effects , Cell Proliferation/drug effects , Coculture Techniques , Cornea/drug effects , Cornea/metabolism , Corneal Keratocytes/drug effects , Corneal Keratocytes/metabolism , Cryopreservation/methods , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/physiology , Freeze Drying/methods , Humans , Raffinose/pharmacology , Trehalose/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...