Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 16(21)2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37959623

ABSTRACT

Bioactive surface coatings have retained the attention of researchers and physicians due to their versatility and range of applications in orthopedics, particularly in infection prevention. Antibacterial metal nanoparticles (mNPs) are a promising therapeutic, with vast application opportunities on orthopedic implants. The current research aimed to construct a polyelectrolyte multilayer on a highly porous titanium implant using alternating thin film coatings of chitosan and alginate via the layer-by-layer (LbL) self-assembly technique, along with the incorporation of silver nanoparticles (AgNPs) or titanium dioxide nanoparticles (TiO2NPs), for antibacterial and osteoconductive activity. These mNPs were characterized for their physicochemical properties using quartz crystal microgravimetry with a dissipation system, nanoparticle tracking analysis, scanning electron microscopy, and atomic force microscopy. Their cytotoxicity and osteogenic differentiation capabilities were assessed using AlamarBlue and alkaline phosphatase (ALP) activity assays, respectively. The antibiofilm efficacy of the mNPs was tested against Staphylococcus aureus. The LbL polyelectrolyte coating was successfully applied to the porous titanium substrate. A dose-dependent relationship between nanoparticle concentration and ALP as well as antibacterial effects was observed. TiO2NP samples were also less cytotoxic than their AgNP counterparts, although similarly antimicrobial. Together, these data serve as a proof-of-concept for a novel coating approach for orthopedic implants with antimicrobial and osteoconductive properties.

2.
Nat Nanotechnol ; 18(8): 922-932, 2023 08.
Article in English | MEDLINE | ID: mdl-37264088

ABSTRACT

Deployment of nucleic acid amplification assays for diagnosing pathogens in point-of-care settings is a challenge due to lengthy preparatory steps. We present a molecular diagnostic platform that integrates a fabless plasmonic nano-surface into an autonomous microfluidic cartridge. The plasmonic 'hot' electron injection in confined space yields a ninefold kinetic acceleration of RNA/DNA amplification at single nucleotide resolution by one-step isothermal loop-mediated and rolling circle amplification reactions. Sequential flow actuation with nanoplasmonic accelerated microfluidic colorimetry and in conjugation with machine learning-assisted analysis (using our 'QolorEX' device) offers an automated diagnostic platform for multiplexed amplification. The versatility of QolorEX is demonstrated by detecting respiratory viruses: SARS-CoV-2 and its variants at the single nucleotide polymorphism level, H1N1 influenza A, and bacteria. For COVID-19 saliva samples, with an accuracy of 95% on par with quantitative polymerase chain reaction and a sample-to-answer time of 13 minutes, QolorEX is expected to advance the monitoring and rapid diagnosis of pathogens.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza, Human , Nucleic Acids , Humans , Microfluidics , Colorimetry , Influenza A Virus, H1N1 Subtype/genetics , COVID-19/diagnosis , SARS-CoV-2/genetics , Molecular Diagnostic Techniques , RNA, Viral/genetics , Sensitivity and Specificity
3.
Proc Natl Acad Sci U S A ; 120(8): e2216547120, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36800389

ABSTRACT

Cyanophycin is a bacterial polymer mainly used for nitrogen storage. It is composed of a peptide backbone of L-aspartate residues with L-arginines attached to their side chains through isopeptide bonds. Cyanophycin is degraded in two steps: Cyanophycinase cleaves the polymer into ß-Asp-Arg dipeptides, which are hydrolyzed into free Asp and Arg by enzymes possessing isoaspartyl dipeptide hydrolase activity. Two unrelated enzymes with this activity, isoaspartyl dipeptidase (IadA) and isoaspartyl aminopeptidase (IaaA) have been shown to degrade ß-Asp-Arg dipeptides, but bacteria which encode cyanophycin-metabolizing genes can lack iaaA and iadA genes. In this study, we investigate a previously uncharacterized enzyme whose gene can cluster with cyanophycin-metabolizing genes. This enzyme, which we name cyanophycin dipeptide hydrolase (CphZ), is specific for dipeptides derived from cyanophycin degradation. Accordingly, a co-complex structure of CphZ and ß-Asp-Arg shows that CphZ, unlike IadA or IaaA, recognizes all portions of its ß-Asp-Arg substrate. Bioinformatic analyses showed that CphZ is found in very many proteobacteria and is homologous to an uncharacterized protein encoded in the "arginine/ornithine transport" (aot) operon of many pseudomonas species, including Pseudomonas aeruginosa. In vitro assays show that AotO is indeed a CphZ, and in cellulo growth experiments show that this enzyme and the aot operon allow P. aeruginosa to take up and use ß-Asp-Arg as a sole carbon and nitrogen source. Together the results establish the novel, highly specific enzyme subfamily of CphZs, suggesting that cyanophycin is potentially used by a much wider range of bacteria than previously appreciated.


Subject(s)
Bacteria , Bacterial Proteins , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacteria/metabolism , Dipeptides/genetics , Dipeptides/metabolism , Biopolymers , Nitrogen/metabolism , Polymers
4.
RSC Med Chem ; 13(4): 445-455, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35647551

ABSTRACT

Stapled peptides have the ability to mimic α-helices involved in protein binding and have proved to be effective pharmacological agents for disrupting protein-protein interactions. DNA-binding proteins such as transcription factors bind their cognate DNA sequences via an α-helix interacting with the major groove of DNA. We previously developed a stapled peptide based on the bacterial alternative sigma factor RpoN capable of binding the RpoN DNA promoter sequence and inhibiting RpoN-mediated expression in Escherichia coli. We have elucidated a structure-activity relationship for DNA binding by this stapled peptide, improving DNA binding affinity constants in the high nM range. Lead peptides were shown to have low toxicity as determined by their low hemolytic activity at 100 µM and were shown to have anti-virulence activity in a Galleria mellonella model of Pseudomonas aeruginosa infection. These findings support further preclinical development of stapled peptides as antivirulence agents targeting P. aeruginosa.

5.
ACS Appl Mater Interfaces ; 14(24): 27564-27574, 2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35670568

ABSTRACT

Nanopillar-textured surfaces are of growing interest because of their ability to kill bacteria through physical damage without relying on antimicrobial chemicals. Although research on antibacterial nanopillars has progressed significantly in recent years, the effect of nanopillar hydrophobicity on bactericidal activity remains elusive. In this study, we investigated the mechano-bactericidal efficacy of etched silicon nanopillars against Pseudomonas aeruginosa at nanopillar hydrophobicities from superhydrophilic to superhydrophobic. Assessing cell viability and bacterial morphology in immersed wet conditions, we observed negligible bactericidal activity; however, air/liquid interface displacement during water evaporation established a bactericidal effect that strongly depends on substrate hydrophobicity. Specifically, bactericidal activity was highest on superhydrophilic surfaces but abated with increasing hydrophobicity, diminishing at substrate contact angles larger than 90°. Calculation of the surface tension and Laplace pressure forces during water evaporation for each substrate subsequently highlighted that the total capillary force, as an external driving force responsible for bacterial deformation, is significantly weaker on hydrophobic substrates. These findings suggest that superhydrophilic nanopillared surfaces are a superior choice for mechano-bactericidal activity, whereas superhydrophobic surfaces, although not bactericidal, may have antibiofouling properties through their self-cleaning effect. These findings provide new insights into the design and application of nanopillared surfaces as functional antibacterial materials.


Subject(s)
Anti-Bacterial Agents , Pseudomonas aeruginosa , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacteria , Surface Properties , Water/chemistry , Wettability
6.
ACS Biomater Sci Eng ; 8(7): 3122-3131, 2022 07 11.
Article in English | MEDLINE | ID: mdl-35678761

ABSTRACT

Nanopillars can influence how bacterial cells attach to a surface. Herein, we investigated whether self-assembled zinc oxide (ZnO) nanopillars synthesized on glass substrates via the conventional hydrothermal route possess anti-biofouling properties either by reducing the amount of initially attached cells or promoting the detachment of cells from the surface or both. To avoid complications associated with manual intervention methods of assessing bacterial attachment on nanopillar surfaces, we implemented a microfluidic approach. In our study, we synthesized two nanopillar topographies: a low surface density of ZnO nanopillars and a high surface density of ZnO nanopillars. Next, we mounted microfluidic channels to each of these substrates. This microfluidic approach allowed us to gently flow Pseudomonas aeruginosa, Staphylococcus aureus, or Bacillus subtilis cells onto the nanopillars for initial attachment before systematically increasing the flowrate to attempt to detach remaining attached cells without introducing air-liquid interface artefacts during the assay. Generally, initial bacterial attachment was similar across all substrates. However, cells consistently detached more readily from high-surface-density nanopillars compared to low-surface-density nanopillars. Electron microscopy revealed that cells that attached to high-surface-density nanopillars rested atop the nanopillars, fully exposed to microfluidic shear, whereas many cells became trapped in the void space between neighboring low-surface-density nanopillars, shielding these cells from detachment. Our findings indicate that self-assembled ZnO nanopillars can provide anti-biofouling properties under submerged flow but only if synthesized at high surface density.


Subject(s)
Biofouling , Zinc Oxide , Microfluidics , Pseudomonas aeruginosa , Staphylococcus aureus , Zinc Oxide/pharmacology
7.
J Fungi (Basel) ; 8(4)2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35448567

ABSTRACT

The mold Aspergillus fumigatus and bacterium Pseudomonas aeruginosa form biofilms in the airways of individuals with cystic fibrosis. Biofilm formation by A. fumigatus depends on the self-produced cationic exopolysaccharide galactosaminogalactan (GAG), while P. aeruginosa biofilms can contain the cationic exopolysaccharide Pel. GAG and Pel are rendered cationic by deacetylation mediated by either the secreted deacetylase Agd3 (A. fumigatus) or the periplasmic deacetylase PelA (P. aeruginosa). Given the similarities between these polymers, the potential for biofilm interactions between these organisms were investigated. P. aeruginosa were observed to adhere to A. fumigatus hyphae in a GAG-dependent manner and to GAG-coated coverslips of A. fumigatus biofilms. In biofilm adherence assays, incubation of P. aeruginosa with A. fumigatus culture supernatants containing de-N-acetylated GAG augmented the formation of adherent P. aeruginosa biofilms, increasing protection against killing by the antibiotic colistin. Fluorescence microscopy demonstrated incorporation of GAG within P. aeruginosa biofilms, suggesting that GAG can serve as an alternate biofilm exopolysaccharide for this bacterium. In contrast, Pel-containing bacterial culture supernatants only augmented the formation of adherent A. fumigatus biofilms when antifungal inhibitory molecules were removed. This study demonstrates biofilm interaction via exopolysaccharides as a potential mechanism of co-operation between these organisms in chronic lung disease.

8.
PLoS Pathog ; 17(3): e1009375, 2021 03.
Article in English | MEDLINE | ID: mdl-33690714

ABSTRACT

Pseudomonas aeruginosa causes chronic airway infections, a major determinant of lung inflammation and damage in cystic fibrosis (CF). Loss-of-function lasR mutants commonly arise during chronic CF infections, are associated with accelerated lung function decline in CF patients and induce exaggerated neutrophilic inflammation in model systems. In this study, we investigated how lasR mutants modulate airway epithelial membrane bound ICAM-1 (mICAM-1), a surface adhesion molecule, and determined its impact on neutrophilic inflammation in vitro and in vivo. We demonstrated that LasR-deficient strains induce increased mICAM-1 levels in airway epithelial cells compared to wild-type strains, an effect attributable to the loss of mICAM-1 degradation by LasR-regulated proteases and associated with enhanced neutrophil adhesion. In a subacute airway infection model, we also observed that lasR mutant-infected mice displayed greater airway epithelial ICAM-1 expression and increased neutrophilic pulmonary inflammation. Our findings provide new insights into the intricate interplay between lasR mutants, LasR-regulated proteases and airway epithelial ICAM-1 expression, and reveal a new mechanism involved in the exaggerated inflammatory response induced by lasR mutants.


Subject(s)
Cystic Fibrosis/complications , Pneumonia/microbiology , Pseudomonas aeruginosa/pathogenicity , Respiratory System/parasitology , Animals , Bacterial Proteins/metabolism , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Gene Expression Regulation, Bacterial/physiology , Humans , Mice , Pneumonia/complications , Pseudomonas Infections/immunology , Pseudomonas Infections/metabolism , Pseudomonas aeruginosa/metabolism , Respiratory System/metabolism , Trans-Activators/genetics
9.
Appl Environ Microbiol ; 87(10)2021 04 27.
Article in English | MEDLINE | ID: mdl-33712420

ABSTRACT

The emergence and spread of extended-spectrum ß-lactamases (ESBLs), metallo-ß-lactamases (MBLs), or variant low-affinity penicillin-binding proteins (PBPs) pose a major threat to our ability to treat bacterial infection using ß-lactam antibiotics. Although combinations of ß-lactamase inhibitors with ß-lactam agents have been clinically successful, there are no MBL inhibitors in current therapeutic use. Furthermore, recent clinical use of new-generation cephalosporins targeting PBP2a, an altered PBP, has led to the emergence of resistance to these antimicrobial agents. Previous work shows that natural polyphenols such as cranberry-extracted proanthocyanidins (cPAC) can potentiate non-ß-lactam antibiotics against Gram-negative bacteria. This study extends beyond previous work by investigating the in vitro effect of cPAC in overcoming ESBL-, MBL-, and PBP2a-mediated ß-lactam resistance. The results show that cPAC exhibit variable potentiation of different ß-lactams against ß-lactam-resistant Enterobacteriaceae clinical isolates as well as ESBL- and MBL-producing E. coli We also discovered that cPAC have broad-spectrum inhibitory properties in vitro on the activity of different classes of ß-lactamases, including CTX-M3 ESBL and IMP-1 MBL. Furthermore, we observe that cPAC selectively potentiate oxacillin and carbenicillin against methicillin-resistant but not methicillin-sensitive staphylococci, suggesting that cPAC also interfere with PBP2a-mediated resistance. This study motivates the need for future work to identify the most bioactive compounds in cPAC and to evaluate their antibiotic-potentiating efficacy in vivoIMPORTANCE The emergence of ß-lactam-resistant Enterobacteriaceae and staphylococci compromises the effectiveness of ß-lactam-based therapy. By acquisition of ESBLs, MBLs, or PBPs, it is highly likely that bacteria may become completely resistant to the most effective ß-lactam agents in the near future. In this study, we described a natural extract rich in proanthocyanidins which exerts adjuvant properties by interfering with two different resistance mechanisms. By their broad-spectrum inhibitory ability, cranberry-extracted proanthocyanidins could have the potential to enhance the effectiveness of existing ß-lactam agents.


Subject(s)
Ampicillin/pharmacology , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Cefotaxime/pharmacology , Proanthocyanidins/pharmacology , Vaccinium macrocarpon , Bacteria/growth & development , Drug Synergism , beta-Lactam Resistance/drug effects
10.
J Exp Med ; 218(4)2021 04 05.
Article in English | MEDLINE | ID: mdl-33533914

ABSTRACT

The airway mucosal microenvironment is crucial for host defense against inhaled pathogens but remains poorly understood. We report here that the airway surface normally undergoes surprisingly large excursions in pH during breathing that can reach pH 9.0 during inhalation, making it the most alkaline fluid in the body. Transient alkalinization requires luminal bicarbonate and membrane-bound carbonic anhydrase 12 (CA12) and is antimicrobial. Luminal bicarbonate concentration and CA12 expression are both reduced in cystic fibrosis (CF), and mucus accumulation both buffers the pH and obstructs airflow, further suppressing the oscillations and bacterial-killing efficacy. Defective pH oscillations may compromise airway host defense in other respiratory diseases and explain CF-like airway infections in people with CA12 mutations.


Subject(s)
Cystic Fibrosis/immunology , Host Microbial Interactions/immunology , Nasal Mucosa/chemistry , Nasal Mucosa/immunology , Respiratory Tract Infections/immunology , Adult , Bicarbonates/metabolism , Bronchi/cytology , Bronchi/immunology , Bronchi/metabolism , Carbonic Anhydrases/metabolism , Case-Control Studies , Cells, Cultured , Cystic Fibrosis/metabolism , Epithelial Cells/metabolism , Female , Humans , Hydrogen-Ion Concentration , Male , Nasal Mucosa/metabolism , Respiratory Tract Infections/metabolism , Young Adult
11.
Front Microbiol ; 11: 576708, 2020.
Article in English | MEDLINE | ID: mdl-33101252

ABSTRACT

Stressors and environmental cues shape the physiological state of bacteria, and thus how they subsequently respond to antibiotic toxicity. To understand how superoxide stress can modulate survival to bactericidal antibiotics, we examined the effect of intracellular superoxide generators, paraquat and menadione, on stationary-phase antibiotic tolerance of the opportunistic pathogen, Pseudomonas aeruginosa. We tested how pre-challenge with sublethal paraquat and menadione alters the tolerance to ofloxacin and meropenem in wild-type P. aeruginosa and mutants lacking superoxide dismutase (SOD) activity (sodAB), the paraquat responsive regulator soxR, (p)ppGpp signaling (relA spoT mutant), or the alternative sigma factor rpoS. We confirmed that loss of SOD activity impairs ofloxacin and meropenem tolerance in stationary phase cells, and found that sublethal superoxide generators induce drug tolerance by stimulating SOD activity. This response is rapid, requires de novo protein synthesis, and is RpoS-dependent but does not require (p)ppGpp signaling nor SoxR. We further showed that pre-challenge with sublethal paraquat induces a SOD-dependent reduction in cell-envelope permeability and ofloxacin penetration. Our results highlight a novel mechanism of hormetic protection by superoxide generators, which may have important implications for stress-induced antibiotic tolerance in P. aeruginosa cells.

12.
Eur Phys J E Soft Matter ; 43(8): 51, 2020 Aug 04.
Article in English | MEDLINE | ID: mdl-32743686

ABSTRACT

We consider the effects of a pressure gradient on the spontaneous flow of an active nematic liquid crystal in a channel, subject to planar anchoring and no-slip conditions on the boundaries of the channel. We employ a model based on the Ericksen-Leslie theory of nematics, with an additional active stress accounting for the activity of the fluid. By directly solving the flow equation, we consider an asymptotic solution for the director angle equation for large activity parameter values and predict the possible values of the director angle in the bulk of the channel. Through a numerical solution of the full nonlinear equations, we examine the effects of pressure on the branches of stable and unstable equilibria, some of which are disconnected from the no-flow state. In the absence of a pressure gradient, solutions are either symmetric or antisymmetric about the channel midpoint; these symmetries are changed by the pressure gradient. Considering the activity-pressure state space allows us to predict qualitatively the extent of each solution type and to show, for large enough pressure gradients, that a branch of non-trivial director angle solutions exists for all activity values.

13.
Nano Lett ; 20(8): 5720-5727, 2020 08 12.
Article in English | MEDLINE | ID: mdl-32573246

ABSTRACT

Nanopillars have been shown to mechanically damage bacteria, suggesting a promising strategy for future antibacterial surfaces. However, the mechanisms underlying this phenomena remain unclear, which ultimately limits translational potential toward real-world applications. Using real-time and end-point analysis techniques, we demonstrate that in contrast to initial expectations, bacteria on multiple hydrophilic "mechano-bactericidal" surfaces remained viable unless exposed to a moving air-liquid interface, which caused considerable cell death. Reasoning that normal forces arising from surface tension may underlie this mechano-bactericidal activity, we developed computational and experimental models to estimate, manipulate, and recreate the impact of these forces. Our experiments together demonstrate that a critical level of external force acting on cells attached to nanopillar surfaces can rapidly deform and rupture bacteria. These studies provide fundamental physical insight into how nanopillar surfaces can serve as effective antibacterial materials and suggest use-conditions under which such nanotechnology approaches may provide practical value.


Subject(s)
Nanostructures , Anti-Bacterial Agents/pharmacology , Bacteria , Nanotechnology , Surface Properties
14.
Front Microbiol ; 10: 1836, 2019.
Article in English | MEDLINE | ID: mdl-31447822

ABSTRACT

The goal of this study was to isolate, screen, and characterize Arctic microbial isolates from Expedition Fjord, Axel Heiberg Island, Nunavut, Canada capable of inhibiting the growth of foodborne and clinically relevant pathogens. Arctic bacteria were isolated from twelve different high Arctic habitats pertaining to active layer permafrost soil, saline spring sediments, lake sediments, and endoliths. This was achieved using (1) the cryo-iPlate, an innovative in situ cultivation device within active layer permafrost soil and (2) bulk plating of Arctic samples by undergraduate students that applied standard culturing methods. To mitigate the possibility of identifying isolates with already-known antibacterial activities, a cell-based dereplication platform was used. Ten out of the twelve Arctic habitats tested were found to yield cold-adapted isolates with antibacterial activity. Eight cold-adapted Arctic isolates were identified with the ability to inhibit the entire dereplication platform, suggesting the possibility of new mechanisms of action. Two promising isolates, initially cultured from perennial saline spring sediments and from active layer permafrost soil (Paenibacillus sp. GHS.8.NWYW.5 and Pseudomonas sp. AALPS.10.MNAAK.13, respectively), displayed antibacterial activity against foodborne and clinically relevant pathogens. Paenibacillus sp. GHS.8.NWYW.5 was capable of inhibiting methicillin resistant and susceptible Staphylococcus aureus (MRSA and MSSA), Listeria monocytogenes, Salmonella enterica and Escherichia coli O157:H7. Pseudomonas sp. AALPS.10.MNAAK.13 was observed to have antagonistic activity against MRSA, MSSA, Acinetobacter baumanii, Enterococcus faecium, and Enterococcus faecalis. After whole genome sequencing and mining, the genome of Paenibacillus sp. GHS.8.NWYW.5 was found to contain seven putative secondary metabolite biosynthetic gene clusters that displayed low homology (<50% coverage, <30% identity, and e-values > 0) to clusters identified within the genome of the type strain pertaining to the same species. These findings suggest that cold-adapted Arctic microbes may be a promising source of novel secondary metabolites for potential use in both industrial and medical settings.

15.
Proc Natl Acad Sci U S A ; 115(39): 9797-9802, 2018 09 25.
Article in English | MEDLINE | ID: mdl-30201715

ABSTRACT

Metabolically quiescent bacteria represent a large proportion of those in natural and host environments, and they are often refractory to antibiotic treatment. Such drug tolerance is also observed in the laboratory during stationary phase, when bacteria face stress and starvation-induced growth arrest. Tolerance requires (p)ppGpp signaling, which mediates the stress and starvation stringent response (SR), but the downstream effectors that confer tolerance are unclear. We previously demonstrated that the SR is linked to increased antioxidant defenses in Pseudomonas aeruginosa We now demonstrate that superoxide dismutase (SOD) activity is a key factor in SR-mediated multidrug tolerance in stationary-phase P. aeruginosa Inactivation of the SR leads to loss of SOD activity and decreased multidrug tolerance during stationary phase. Genetic or chemical complementation of SOD activity of the ΔrelA spoT mutant (ΔSR) is sufficient to restore antibiotic tolerance to WT levels. Remarkably, we observe high membrane permeability and increased drug internalization upon ablation of SOD activity. Combined, our results highlight an unprecedented mode of SR-mediated multidrug tolerance in stationary-phase P. aeruginosa and suggest that inhibition of SOD activity may potentiate current antibiotics.


Subject(s)
Drug Resistance, Multiple, Bacterial , Pseudomonas aeruginosa/drug effects , Superoxide Dismutase/metabolism , Anti-Bacterial Agents/pharmacology , Dose-Response Relationship, Drug , Gentamicins/pharmacology , Ligases/metabolism , Meropenem , Microbial Sensitivity Tests , Ofloxacin/pharmacology , Pseudomonas aeruginosa/enzymology , Signal Transduction , Superoxide Dismutase/physiology , Thienamycins/pharmacology
16.
Article in English | MEDLINE | ID: mdl-29177135

ABSTRACT

The function of cystic fibrosis transmembrane conductance regulator (CFTR) channels is crucial in human airways. However unfortunately, chronic Pseudomonas aeruginosa infection has been shown to impair CFTR proteins in non-CF airway epithelial cells (AEC) and to alter the efficiency of new treatments with CFTR modulators designed to correct the basic CFTR default in AEC from cystic fibrosis (CF) patients carrying the F508del mutation. Our aim was first to compare the effect of laboratory strains, clinical isolates, engineered and natural mutants to determine the role of the LasR quorum sensing system in CFTR impairment, and second, to test the efficiency of a quorum sensing inhibitor to counteract the deleterious impact of P. aeruginosa both on wt-CFTR and on the rescue of F508del-CFTR by correctors. We first report that exoproducts from either the laboratory PAO1 strain or a clinical ≪Early≫ isolate (from an early stage of infection) altered CFTR expression, localization and function in AEC expressing wt-CFTR. Genetic inactivation of the quorum-sensing LasR in PAO1 (PAO1ΔlasR) or in a natural clinical mutant (≪Late≫ CF-adapted clinical isolate) abolished wt-CFTR impairment. PAO1 exoproducts also dampened F508del-CFTR rescue by VRT-325 or Vx-809 correctors in CF cells, whereas PAO1ΔlasR had no impact. Importantly, treatment of P. aeruginosa cultures with a quorum sensing inhibitor (HDMF) prevented the negative effect of P. aeruginosa exoproducts on wt-CFTR and preserved CFTR rescue by correctors in CF AEC. These findings indicate that LasR-interfering strategies could be of benefits to counteract the deleterious effect of P. aeruginosa in infected patients.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Down-Regulation , Epithelial Cells/metabolism , Pseudomonas Infections/metabolism , Pseudomonas aeruginosa/metabolism , Quorum Sensing/physiology , Respiratory System/metabolism , Aminopyridines/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Benzodioxoles/pharmacology , Cell Line , Cells, Cultured , Child , Cystic Fibrosis/metabolism , Cystic Fibrosis/microbiology , Cystic Fibrosis Transmembrane Conductance Regulator/drug effects , Epithelial Cells/microbiology , Gene Expression Regulation, Bacterial/physiology , Humans , Infant , Mutation , Piperazines/pharmacology , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/pathogenicity , Quinazolines/pharmacology , Respiratory System/microbiology , Trans-Activators/genetics , Trans-Activators/metabolism
17.
FASEB J ; 30(9): 3011-25, 2016 09.
Article in English | MEDLINE | ID: mdl-27178322

ABSTRACT

Chronic Pseudomonas aeruginosa lung infections are associated with progressive epithelial damage and lung function decline. In addition to its role in tissue injury, the persistent presence of P. aeruginosa-secreted products may also affect epithelial repair ability, raising the need for new antivirulence therapies. The purpose of our study was to better understand the outcomes of P. aeruginosa exoproducts exposure on airway epithelial repair processes to identify a strategy to counteract their deleterious effect. We found that P. aeruginosa exoproducts significantly decreased wound healing, migration, and proliferation rates, and impaired the ability of directional migration of primary non-cystic fibrosis (CF) human airway epithelial cells. Impact of exoproducts was inhibited after mutations in P. aeruginosa genes that encoded for the quorum-sensing (QS) transcriptional regulator, LasR, and the elastase, LasB, whereas impact was restored by LasB induction in ΔlasR mutants. P. aeruginosa purified elastase also induced a significant decrease in non-CF epithelial repair, whereas protease inhibition with phosphoramidon prevented the effect of P. aeruginosa exoproducts. Furthermore, treatment of P. aeruginosa cultures with 4-hydroxy-2,5-dimethyl-3(2H)-furanone, a QS inhibitor, abrogated the negative impact of P. aeruginosa exoproducts on airway epithelial repair. Finally, we confirmed our findings in human airway epithelial cells from patients with CF, a disease featuring P. aeruginosa chronic respiratory infection. These data demonstrate that secreted proteases under the control of the LasR QS system impair airway epithelial repair and that QS inhibitors could be of benefit to counteract the deleterious effect of P. aeruginosa in infected patients.-Ruffin, M., Bilodeau, C., Maillé, É., LaFayette, S. L., McKay, G. A., Trinh, N. T. N., Beaudoin, T., Desrosiers, M.-Y., Rousseau, S., Nguyen, D., Brochiero, E. Quorum-sensing inhibition abrogates the deleterious impact of Pseudomonas aeruginosa on airway epithelial repair.


Subject(s)
Bacterial Proteins/metabolism , Epithelial Cells/microbiology , Pseudomonas aeruginosa/physiology , Cell Movement , Cell Proliferation , Cells, Cultured , Gene Expression Regulation, Bacterial/physiology , Humans , Mutation , Respiratory Mucosa/cytology , Respiratory System
18.
J Bacteriol ; 196(9): 1641-50, 2014 May.
Article in English | MEDLINE | ID: mdl-24509318

ABSTRACT

As a ubiquitous environmental organism and an important human pathogen, Pseudomonas aeruginosa readily adapts and responds to a wide range of conditions and habitats. The intricate regulatory networks that link quorum sensing and other global regulators allow P. aeruginosa to coordinate its gene expression and cell signaling in response to different growth conditions and stressors. Upon nutrient transitions and starvation, as well as other environmental stresses, the stringent response is activated, mediated by the signal (p)ppGpp. P. aeruginosa produces a family of molecules called HAQ (4-hydroxy-2-alkylquinolines), some of which exhibit antibacterial and quorum-sensing signaling functions and regulate virulence genes. In this study, we report that (p)ppGpp negatively regulates HAQ biosynthesis: in a (p)ppGpp-null (ΔSR) mutant, HHQ (4-hydroxyl-2-heptylquinoline) and PQS (3,4-dihydroxy-2-heptylquinoline) levels are increased due to upregulated pqsA and pqsR expression and reduced repression by the rhl system. We also found that (p)ppGpp is required for full expression of both rhl and las AHL (acyl-homoserine lactone) quorum-sensing systems, since the ΔSR mutant has reduced rhlI, rhlR, lasI, and lasR expression, butanoyl-homoserine lactone (C4-HSL) and 3-oxo-dodecanoyl-homoserine lactone (3-oxo-C12-HSL) levels, and rhamnolipid and elastase production. Furthermore, (p)ppGpp significantly modulates the AHL and PQS quorum-sensing hierarchy, as the las system no longer has a dominant effect on HAQ biosynthesis when the stringent response is inactivated.


Subject(s)
Pseudomonas aeruginosa/physiology , Quinolines/metabolism , Quorum Sensing , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Guanine Nucleotides/biosynthesis , Guanine Nucleotides/metabolism , Pseudomonas aeruginosa/genetics
19.
Science ; 334(6058): 982-6, 2011 Nov 18.
Article in English | MEDLINE | ID: mdl-22096200

ABSTRACT

Bacteria become highly tolerant to antibiotics when nutrients are limited. The inactivity of antibiotic targets caused by starvation-induced growth arrest is thought to be a key mechanism producing tolerance. Here we show that the antibiotic tolerance of nutrient-limited and biofilm Pseudomonas aeruginosa is mediated by active responses to starvation, rather than by the passive effects of growth arrest. The protective mechanism is controlled by the starvation-signaling stringent response (SR), and our experiments link SR-mediated tolerance to reduced levels of oxidant stress in bacterial cells. Furthermore, inactivating this protective mechanism sensitized biofilms by several orders of magnitude to four different classes of antibiotics and markedly enhanced the efficacy of antibiotic treatment in experimental infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/physiology , Animals , Anti-Bacterial Agents/therapeutic use , Biofilms/growth & development , Catalase/metabolism , Drug Resistance, Bacterial , Drug Tolerance , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/growth & development , Escherichia coli/physiology , Female , Hydroxyl Radical/metabolism , Hydroxyquinolines/metabolism , Mice , Mice, Inbred C57BL , Mutation , Ofloxacin/pharmacology , Ofloxacin/therapeutic use , Oxidative Stress , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/growth & development , Serine/analogs & derivatives , Serine/pharmacology , Superoxide Dismutase/metabolism
20.
Antimicrob Agents Chemother ; 54(12): 5369-71, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20876372

ABSTRACT

Oritavancin is an investigational lipoglycopeptide in clinical development for the treatment of acute bacterial skin and skin structure infections. In this study, we demonstrate that oritavancin causes bacterial membrane depolarization and permeabilization leading to cell death of Gram-positive pathogens and that these effects are attributable to the 4'-chlorobiphenylmethyl group of the molecule.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cell Membrane/drug effects , Enterococcus/drug effects , Glycopeptides/pharmacology , Staphylococcus aureus/drug effects , Vancomycin/pharmacology , Drug Resistance, Bacterial , Lipoglycopeptides
SELECTION OF CITATIONS
SEARCH DETAIL
...