Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Cancers (Basel) ; 16(5)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38473208

ABSTRACT

Most platforms used for the molecular reconstruction of the tumor-immune microenvironment (TIME) of a solid tumor fail to explore the spatial context of the three-dimensional (3D) space of the tumor at a single-cell resolution, and thus lack information about cell-cell or cell-extracellular matrix (ECM) interactions. To address this issue, a pipeline which integrated multiplex spatially resolved multi-omics platforms was developed to identify crosstalk signaling networks among various cell types and the ECM in the 3D TIME of two FFPE (formalin-fixed paraffin embedded) gynecologic tumor samples. These platforms include non-targeted mass spectrometry imaging (glycans, metabolites, and peptides) and Stereo-seq (spatial transcriptomics) and targeted seqIF (IHC proteomics). The spatially resolved imaging data in a two- and three-dimensional space demonstrated various cellular neighborhoods in both samples. The collection of spatially resolved analytes in a voxel (3D pixel) across serial sections of the tissue was also demonstrated. Data collected from this analytical pipeline were used to construct spatial 3D maps with single-cell resolution, which revealed cell identity, activation, and energized status. These maps will provide not only insights into the molecular basis of spatial cell heterogeneity in the TIME, but also novel predictive biomarkers and therapeutic targets, which can improve patient survival rates.

2.
J Clin Invest ; 134(9)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38530366

ABSTRACT

Aberrant expression of the E26 transformation-specific (ETS) transcription factors characterizes numerous human malignancies. Many of these proteins, including EWS:FLI1 and EWS:ERG fusions in Ewing sarcoma (EwS) and TMPRSS2:ERG in prostate cancer (PCa), drive oncogenic programs via binding to GGAA repeats. We report here that both EWS:FLI1 and ERG bind and transcriptionally activate GGAA-rich pericentromeric heterochromatin. The respective pathogen-like HSAT2 and HSAT3 RNAs, together with LINE, SINE, ERV, and other repeat transcripts, are expressed in EwS and PCa tumors, secreted in extracellular vesicles (EVs), and are highly elevated in plasma of patients with EwS with metastatic disease. High human satellite 2 and 3 (HSAT2,3) levels in EWS:FLI1- or ERG-expressing cells and tumors were associated with induction of G2/M checkpoint, mitotic spindle, and DNA damage programs. These programs were also activated in EwS EV-treated fibroblasts, coincident with accumulation of HSAT2,3 RNAs, proinflammatory responses, mitotic defects, and senescence. Mechanistically, HSAT2,3-enriched cancer EVs induced cGAS-TBK1 innate immune signaling and formation of cytosolic granules positive for double-strand RNAs, RNA-DNA, and cGAS. Hence, aberrantly expressed ETS proteins derepress pericentromeric heterochromatin, yielding pathogenic RNAs that transmit genotoxic stress and inflammation to local and distant sites. Monitoring HSAT2,3 plasma levels and preventing their dissemination may thus improve therapeutic strategies and blood-based diagnostics.


Subject(s)
DNA Damage , Extracellular Vesicles , Oncogene Proteins, Fusion , Proto-Oncogene Protein c-fli-1 , RNA-Binding Protein EWS , Transcriptional Regulator ERG , Humans , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Transcriptional Regulator ERG/genetics , Transcriptional Regulator ERG/metabolism , Male , RNA-Binding Protein EWS/genetics , RNA-Binding Protein EWS/metabolism , Proto-Oncogene Protein c-fli-1/genetics , Proto-Oncogene Protein c-fli-1/metabolism , Sarcoma, Ewing/genetics , Sarcoma, Ewing/pathology , Sarcoma, Ewing/metabolism , Sarcoma, Ewing/immunology , Cell Line, Tumor , RNA, Neoplasm/genetics , RNA, Neoplasm/metabolism , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Mice , Animals , Heterochromatin/metabolism , Heterochromatin/genetics
3.
Lab Invest ; 104(5): 100341, 2024 May.
Article in English | MEDLINE | ID: mdl-38280634

ABSTRACT

Ki-67 is a nuclear protein associated with proliferation, and a strong potential biomarker in breast cancer, but is not routinely measured in current clinical management owing to a lack of standardization. Digital image analysis (DIA) is a promising technology that could allow high-throughput analysis and standardization. There is a dearth of data on the clinical reliability as well as intra- and interalgorithmic variability of different DIA methods. In this study, we scored and compared a set of breast cancer cases in which manually counted Ki-67 has already been demonstrated to have prognostic value (n = 278) to 5 DIA methods, namely Aperio ePathology (Lieca Biosystems), Definiens Tissue Studio (Definiens AG), Qupath, an unsupervised immunohistochemical color histogram algorithm, and a deep-learning pipeline piNET. The piNET system achieved high agreement (interclass correlation coefficient: 0.850) and correlation (R = 0.85) with the reference score. The Qupath algorithm exhibited a high degree of reproducibility among all rater instances (interclass correlation coefficient: 0.889). Although piNET performed well against absolute manual counts, none of the tested DIA methods classified common Ki-67 cutoffs with high agreement or reached the clinically relevant Cohen's κ of at least 0.8. The highest agreement achieved was a Cohen's κ statistic of 0.73 for cutoffs 20% and 25% by the piNET system. The main contributors to interalgorithmic variation and poor cutoff characterization included heterogeneous tumor biology, varying algorithm implementation, and setting assignments. It appears that image segmentation is the primary explanation for semiautomated intra-algorithmic variation, which involves significant manual intervention to correct. Automated pipelines, such as piNET, may be crucial in developing robust and reproducible unbiased DIA approaches to accurately quantify Ki-67 for clinical diagnosis in the future.


Subject(s)
Breast Neoplasms , Image Processing, Computer-Assisted , Ki-67 Antigen , Humans , Ki-67 Antigen/analysis , Ki-67 Antigen/metabolism , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Female , Reproducibility of Results , Image Processing, Computer-Assisted/methods , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/analysis , Algorithms , Immunohistochemistry/methods
4.
Kidney Int Rep ; 8(3): 628-641, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36938084

ABSTRACT

Introduction: Immune checkpoint inhibitors (ICIs) induce impressive antitumor responses but may lead to acute kidney injury (AKI) associated with ICI therapy (AKI-ICI). Biomarkers distinguishing AKI-ICI from AKI because of other causes (AKI-other) are currently lacking. Because ICIs block immunoregulatory pathways, we hypothesized that biomarkers related to immune cell dysregulation, including tumor necrosis factor alpha (TNF-α) and other markers of B and T cell activation in the systemic circulation and kidney tissue, may aid with the diagnosis of AKI-ICI. Methods: This is a prospective study consisting of 24 participants who presented with AKI during ICI therapy, adjudicated to either have AKI-ICI (n = 14) or AKI-other (n = 10). We compared markers of kidney inflammation and injury (neutrophil gelatinase-associated lipocalin, kidney injury molecule-1) as well as plasma and urine levels of T cell-associated cytokines (TNF-α, interferon-γ, interleukin (IL)-2, IL-4, IL-6, IL-8, IL-9, and IL-10) between groups. We also compared T-cell responses in the systemic circulation and in kidney tissue across groups, using mass cytometry systems. Results: We observed increase in several specific immune cells, including CD4 memory, T helper cells, and dendritic cells in the kidney tissue, as well as in the urine cytokines IL-2, IL-10, and TNF-α, in patients who developed AKI-ICI compared to patients with AKI-other (P < 0.05 for all). The discriminatory ability of TNF-α on AKI cause was strong (area under the curve = 0.814, 95% confidence interval: 0.623-1.00. The CD4+ T cells with memory phenotype formed the dominant subset. Conclusion: These results suggest that specific T-cell responses and their respective cytokines may be indicative of AKI associated with ICI therapy and may help to differentiate AKI-ICI from AKI-other. Urine TNF-α is a promising biomarker for AKI-ICI, which is most often caused by acute interstitial nephritis (AIN), and TNF-α pathway may serve as a potential target for therapeutic intervention.

6.
Front Oncol ; 12: 926497, 2022.
Article in English | MEDLINE | ID: mdl-35978831

ABSTRACT

Background: Tumor hypoxia is theorized to contribute to the aggressive biology of pancreatic ductal adenocarcinoma (PDAC). We previously reported that hypoxia correlated with rapid tumor growth and metastasis in patient-derived xenografts. Anticipating a prognostic relevance of hypoxia in patient tumors, we developed protocols for automated semi-quantitative image analysis to provide an objective, observer-independent measure of hypoxia. We further validated this method which can reproducibly estimate pimonidazole-detectable hypoxia in a high-through put manner. Methods: We studied the performance of three automated image analysis platforms in scoring pimonidazole-detectable hypoxia in resected PDAC (n = 10) in a cohort of patients enrolled in PIMO-PANC. Multiple stained tumor sections were analyzed on three independent image-analysis platforms, Aperio Genie (AG), Definiens Tissue Studio (TS), and Definiens Developer (DD), which comprised of a customized rule set. Results: The output from Aperio Genie (AG) had good concordance with manual scoring, but the workflow was resource-intensive and not suited for high-throughput analysis. TS analysis had high levels of variability related to misclassification of cells class, while the customized rule set of DD had a high level of reliability with an intraclass coefficient of more than 85%. Discussion: This work demonstrates the feasibility of developing a robust, high-performance pipeline for an automated, quantitative scoring of pimonidazole-detectable hypoxia in patient tumors.

7.
Immunity ; 55(5): 862-878.e8, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35508166

ABSTRACT

Macrophage colony stimulating factor-1 (CSF-1) plays a critical role in maintaining myeloid lineage cells. However, congenital global deficiency of CSF-1 (Csf1op/op) causes severe musculoskeletal defects that may indirectly affect hematopoiesis. Indeed, we show here that osteolineage-derived Csf1 prevented developmental abnormalities but had no effect on monopoiesis in adulthood. However, ubiquitous deletion of Csf1 conditionally in adulthood decreased monocyte survival, differentiation, and migration, independent of its effects on bone development. Bone histology revealed that monocytes reside near sinusoidal endothelial cells (ECs) and leptin receptor (Lepr)-expressing perivascular mesenchymal stromal cells (MSCs). Targeted deletion of Csf1 from sinusoidal ECs selectively reduced Ly6C- monocytes, whereas combined depletion of Csf1 from ECs and MSCs further decreased Ly6Chi cells. Moreover, EC-derived CSF-1 facilitated recovery of Ly6C- monocytes and protected mice from weight loss following induction of polymicrobial sepsis. Thus, monocytes are supported by distinct cellular sources of CSF-1 within a perivascular BM niche.


Subject(s)
Macrophage Colony-Stimulating Factor , Mesenchymal Stem Cells , Animals , Bone Marrow , Bone Marrow Cells , Endothelial Cells , Macrophage Colony-Stimulating Factor/pharmacology , Mice , Monocytes
8.
Appl Immunohistochem Mol Morphol ; 30(7): 486-492, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35587994

ABSTRACT

The T-lymphocyte-mediated inflammation in Crohn's disease can be assessed by quantifying CD3-positive T-lymphocyte counts in colonic sections. We developed and validated a process to reliably quantify immunohistochemical marker-positive cells in a high-throughput setting using whole slide images (WSIs) of CD3-immunostained colonic and ileal tissue sections. In regions of interest (ROIs) and/or whole tissue sections of 40 WSIs from 36 patients with Crohn's disease, CD3-positive cells were quantified by an expert gastrointestinal pathologist (gold standard) and by image analysis algorithms developed with software from 3 independent vendors. Semiautomated quantification of CD3-positive cell counts estimated in 1 ROI per section were accurate when compared with manual analysis (Pearson correlation coefficient, 0.877 to 0.925). Biological variability was acceptable in digitally determined CD3-positive cell measures between 2 to 5 ROIs annotated on the same tissue section (coefficient of variation <25%). Results from computer-aided analysis of CD3-positive T lymphocytes in a whole tissue section and the average of results from 2 to 5 ROIs per tissue section lacked reliability (overestimation or underestimation and systematic bias), suggesting that absolute quantification of CD3-positive T lymphocytes in a whole tissue section may be more accurate. Semiautomated image analysis in WSIs demonstrated reproducible CD3-positive cell measures across 3 independent algorithms. A computer-aided digital image analysis method was developed and validated to quantify CD3-positive T lymphocytes in colonic and ileal biopsy sections from patients with Crohn's disease. Results support consideration of this digital analysis method for use in future Crohn's disease clinical studies.


Subject(s)
Crohn Disease , T-Lymphocytes , Biopsy , Crohn Disease/pathology , Humans , Image Processing, Computer-Assisted/methods , Reproducibility of Results , T-Lymphocytes/pathology
9.
J Pathol Inform ; 13: 100011, 2022.
Article in English | MEDLINE | ID: mdl-35242448

ABSTRACT

The diagnosis of plasma cell neoplasms requires accurate, and ideally precise, percentages. This plasma cell percentage is often determined by visual estimation of CD138-stained bone marrow biopsies and clot sections. While not necessarily inaccurate, estimates are by definition imprecise. For this study, we hypothesized that deep learning can be used to improve precision. We trained a semantic segmentation-based convolutional neural network (CNN) using annotations of CD138+ and CD138- cells provided by one pathologist on small image patches of bone marrow and validated the CNN on an independent test set of image patches using annotations from two pathologists and a non-deep learning commercial software. On validation, we found that the intraclass correlation coefficients for plasma cell percentages between the CNN and pathologist #1, a non-deep learning commercial software and pathologist #1, and pathologists #1 and #2 were 0.975, 0.892, and 0.994, respectively. The overall results show that CNN labels were almost as accurate as pathologist labels at a cell-by-cell level. Once satisfied with performance, we scaled-up the CNN to evaluate whole slide images (WSIs), and deployed the system as a workflow friendly web application to measure plasma cell percentages using snapshots taken from microscope cameras.

10.
Cancer Res ; 81(24): 6196-6206, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34711609

ABSTRACT

Tumor cells that preferentially enter circulation include the precursors of metastatic cancer. Previously, we characterized circulating tumor cells (CTC) from patients with breast cancer and identified a signature of genomic regions with recurrent copy-number gains. Through FISH, we now show that these CTC-associated regions are detected within the matched untreated primary tumors of these patients (21% to 69%, median 55.5%, n = 19). Furthermore, they are more prevalent in the metastases of patients who died from breast cancer after multiple rounds of treatment (70% to 100%, median 93%, samples n = 41). Diversity indices revealed that higher spatial heterogeneity for these regions within primary tumors is associated with increased dissemination and metastasis. An identified subclone with multiple regions gained (MRG clone) was enriched in a posttreatment primary breast carcinoma as well as multiple metastatic tumors and local breast recurrences obtained at autopsy, indicative of a distinct early subclone with the capability to resist multiple lines of treatment and eventually cause death. In addition, multiplex immunofluorescence revealed that tumor heterogeneity is significantly associated with the degree of infiltration of B lymphocytes in triple-negative breast cancer, a subtype with a large immune component. Collectively, these data reveal the functional potential of genetic subclones that comprise heterogeneous primary breast carcinomas and are selected for in CTCs and posttreatment breast cancer metastases. In addition, they uncover a relationship between tumor heterogeneity and host immune response in the tumor microenvironment. SIGNIFICANCE: As breast cancers progress, they become more heterogeneous for multiple regions amplified in circulating tumor cells, and intratumoral spatial heterogeneity is associated with the immune landscape.


Subject(s)
Biomarkers, Tumor/genetics , Immunity , Lung Neoplasms/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Neoplasm Recurrence, Local/immunology , Neoplastic Cells, Circulating/pathology , Triple Negative Breast Neoplasms/immunology , Adult , Aged , Aged, 80 and over , Combined Modality Therapy , Female , Follow-Up Studies , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/genetics , Lung Neoplasms/secondary , Lung Neoplasms/therapy , Male , Middle Aged , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Neoplasm Recurrence, Local/therapy , Prognosis , Prospective Studies , Survival Rate , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/therapy , Tumor Cells, Cultured , Tumor Microenvironment
11.
Mayo Clin Proc ; 96(10): 2561-2575, 2021 10.
Article in English | MEDLINE | ID: mdl-34425963

ABSTRACT

OBJECTIVE: To compare coronavirus disease 2019 (COVID-19) acute kidney injury (AKI) to sepsis-AKI (S-AKI). The morphology and transcriptomic and proteomic characteristics of autopsy kidneys were analyzed. PATIENTS AND METHODS: Individuals 18 years of age and older who died from COVID-19 and had an autopsy performed at Mayo Clinic between April 2020 to October 2020 were included. Morphological evaluation of the kidneys of 17 individuals with COVID-19 was performed. In a subset of seven COVID-19 cases with postmortem interval of less than or equal to 20 hours, ultrastructural and molecular characteristics (targeted transcriptome and proteomics analyses of tubulointerstitium) were evaluated. Molecular characteristics were compared with archived cases of S-AKI and nonsepsis causes of AKI. RESULTS: The spectrum of COVID-19 renal pathology included macrophage-dominant microvascular inflammation (glomerulitis and peritubular capillaritis), vascular dysfunction (peritubular capillary congestion and endothelial injury), and tubular injury with ultrastructural evidence of mitochondrial damage. Investigation of the spatial architecture using a novel imaging mass cytometry revealed enrichment of CD3+CD4+ T cells in close proximity to antigen-presenting cells, and macrophage-enriched glomerular and interstitial infiltrates, suggesting an innate and adaptive immune tissue response. Coronavirus disease 2019 AKI and S-AKI, as compared to nonseptic AKI, had an enrichment of transcriptional pathways involved in inflammation (apoptosis, autophagy, major histocompatibility complex class I and II, and type 1 T helper cell differentiation). Proteomic pathway analysis showed that COVID-19 AKI and to a lesser extent S-AKI were enriched in necroptosis and sirtuin-signaling pathways, both involved in regulatory response to inflammation. Upregulation of the ceramide-signaling pathway and downregulation of oxidative phosphorylation in COVID-19 AKI were noted. CONCLUSION: This data highlights the similarities between S-AKI and COVID-19 AKI and suggests that mitochondrial dysfunction may play a pivotal role in COVID-19 AKI. This data may allow the development of novel diagnostic and therapeutic targets.


Subject(s)
Acute Kidney Injury/pathology , COVID-19/pathology , Kidney/pathology , Sepsis/pathology , Acute Kidney Injury/virology , Adult , Autopsy , Humans , Kidney Tubules, Proximal/pathology , Male , Middle Aged , Sepsis/virology
12.
Commun Biol ; 4(1): 914, 2021 07 26.
Article in English | MEDLINE | ID: mdl-34312483

ABSTRACT

Malignant pleural mesothelioma (MPM) is an aggressive neoplasm originating from the pleura. Non-epithelioid (biphasic and sarcomatoid) MPM are particularly resistant to therapy. We investigated the role of the GITR-GITRL pathway in mediating the resistance to therapy. We found that GITR and GITRL expressions were higher in the sarcomatoid cell line (CRL5946) than in non-sarcomatoid cell lines (CRL5915 and CRL5820), and that cisplatin and Cs-137 irradiation increased GITR and GITRL expressions on tumor cells. Transcriptome analysis demonstrated that the GITR-GITRL pathway was promoting tumor growth and inhibiting cell apoptosis. Furthermore, GITR+ and GITRL+ cells demonstrated increased spheroid formation in vitro and in vivo. Using patient derived xenografts (PDXs), we demonstrated that anti-GITR neutralizing antibodies attenuated tumor growth in sarcomatoid PDX mice. Tumor immunostaining demonstrated higher levels of GITR and GITRL expressions in non-epithelioid compared to epithelioid tumors. Among 73 patients uniformly treated with accelerated radiation therapy followed by surgery, the intensity of GITR expression after radiation negatively correlated with survival in non-epithelioid MPM patients. In conclusion, the GITR-GITRL pathway is an important mechanism of autocrine proliferation in sarcomatoid mesothelioma, associated with tumor stemness and resistance to therapy. Blocking the GITR-GITRL pathway could be a new therapeutic target for non-epithelioid mesothelioma.


Subject(s)
Antineoplastic Agents/pharmacology , Cesium Radioisotopes/pharmacology , Cisplatin/pharmacology , Gene Expression Regulation, Neoplastic , Glucocorticoid-Induced TNFR-Related Protein/genetics , Mesothelioma, Malignant/genetics , Tumor Necrosis Factors/genetics , Animals , Cell Line, Tumor , Female , Glucocorticoid-Induced TNFR-Related Protein/metabolism , Humans , Mesothelioma, Malignant/therapy , Mice , Mice, Inbred NOD , Mice, SCID , Tumor Necrosis Factors/metabolism
13.
Cell Death Dis ; 12(4): 310, 2021 03 24.
Article in English | MEDLINE | ID: mdl-33762578

ABSTRACT

SARS-CoV-2 is responsible for the ongoing world-wide pandemic which has already taken more than two million lives. Effective treatments are urgently needed. The enzymatic activity of the HECT-E3 ligase family members has been implicated in the cell egression phase of deadly RNA viruses such as Ebola through direct interaction of its VP40 Protein. Here we report that HECT-E3 ligase family members such as NEDD4 and WWP1 interact with and ubiquitylate the SARS-CoV-2 Spike protein. Furthermore, we find that HECT family members are overexpressed in primary samples derived from COVID-19 infected patients and COVID-19 mouse models. Importantly, rare germline activating variants in the NEDD4 and WWP1 genes are associated with severe COVID-19 cases. Critically, I3C, a natural NEDD4 and WWP1 inhibitor from Brassicaceae, displays potent antiviral effects and inhibits viral egression. In conclusion, we identify the HECT family members of E3 ligases as likely novel biomarkers for COVID-19, as well as new potential targets of therapeutic strategy easily testable in clinical trials in view of the established well-tolerated nature of the Brassicaceae natural compounds.


Subject(s)
COVID-19 Drug Treatment , COVID-19/enzymology , Ubiquitin-Protein Ligases/antagonists & inhibitors , Ubiquitin-Protein Ligases/metabolism , Adult , Aged , Animals , Antiviral Agents/pharmacology , COVID-19/genetics , COVID-19/metabolism , Chlorocebus aethiops , Endosomal Sorting Complexes Required for Transport/metabolism , Female , Humans , Indoles/pharmacology , Male , Mice , Mice, Inbred BALB C , Middle Aged , Nedd4 Ubiquitin Protein Ligases/genetics , Nedd4 Ubiquitin Protein Ligases/metabolism , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitination , Vero Cells
14.
Nat Commun ; 11(1): 4205, 2020 08 21.
Article in English | MEDLINE | ID: mdl-32826891

ABSTRACT

Triple negative breast cancer (TNBC) is a deadly form of breast cancer due to the development of resistance to chemotherapy affecting over 30% of patients. New therapeutics and companion biomarkers are urgently needed. Recognizing the elevated expression of glucose transporter 1 (GLUT1, encoded by SLC2A1) and associated metabolic dependencies in TNBC, we investigated the vulnerability of TNBC cell lines and patient-derived samples to GLUT1 inhibition. We report that genetic or pharmacological inhibition of GLUT1 with BAY-876 impairs the growth of a subset of TNBC cells displaying high glycolytic and lower oxidative phosphorylation (OXPHOS) rates. Pathway enrichment analysis of gene expression data suggests that the functionality of the E2F pathway may reflect to some extent OXPHOS activity. Furthermore, the protein levels of retinoblastoma tumor suppressor (RB1) strongly correlate with the degree of sensitivity to GLUT1 inhibition in TNBC, where RB1-negative cells are insensitive to GLUT1 inhibition. Collectively, our results highlight a strong and targetable RB1-GLUT1 metabolic axis in TNBC and warrant clinical evaluation of GLUT1 inhibition in TNBC patients stratified according to RB1 protein expression levels.


Subject(s)
Glucose Transporter Type 1/antagonists & inhibitors , Glucose Transporter Type 1/metabolism , Retinoblastoma Binding Proteins/metabolism , Triple Negative Breast Neoplasms/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Apoptosis/drug effects , Biomarkers, Tumor , Breast Neoplasms/metabolism , Cell Cycle , Cell Line, Tumor , Cell Proliferation , Female , Gene Expression Regulation, Neoplastic/drug effects , Glucose Transporter Type 1/genetics , Humans , Mice , Oxidative Phosphorylation , Proteomics , Pyrazoles/pharmacology , Pyridines/pharmacology , Quinolines , RNA, Messenger/metabolism , Triple Negative Breast Neoplasms/genetics , Ubiquitin-Protein Ligases/genetics
15.
Theranostics ; 10(4): 1960-1980, 2020.
Article in English | MEDLINE | ID: mdl-32042347

ABSTRACT

It is currently challenging to eradicate cancer. In the case of solid tumors, the dense and aberrant extracellular matrix (ECM) is a major contributor to the heterogeneous distribution of small molecule drugs and nano-formulations, which makes certain areas of the tumor difficult to treat. As such, much research is devoted to characterizing this matrix and devising strategies to modify its properties as a means to facilitate the improved penetration of drugs and their nano-formulations. This contribution presents the current state of knowledge on the composition of normal ECM and changes to ECM that occur during the pathological progression of cancer. It also includes discussion of strategies designed to modify the composition/properties of the ECM as a means to enhance the penetration and transport of drugs and nano-formulations within solid tumors. Moreover, a discussion of approaches to image the ECM, as well as ways to monitor changes in the ECM as a function of time are presented, as these are important for the implementation of ECM-modifying strategies within therapeutic interventions. Overall, considering the complexity of the ECM, its variability within different tissues, and the multiple pathways by which homeostasis is maintained (both in normal and malignant tissues), the available literature - while promising - suggests that improved monitoring of ECM remodeling in vivo is needed to harness the described strategies to their full potential, and match them with an appropriate chemotherapy regimen.


Subject(s)
Collagen , Extracellular Matrix , Hyaluronic Acid/metabolism , Neoplasms/drug therapy , Collagen/drug effects , Collagen/metabolism , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Fibroblasts/drug effects , Fibroblasts/metabolism , Homeostasis , Humans , Nanoparticles/therapeutic use , Neoplasms/diagnostic imaging , Neoplasms/metabolism , Neoplasms/pathology , Optical Imaging/methods
16.
J Thorac Cardiovasc Surg ; 159(5): 2082-2091.e1, 2020 05.
Article in English | MEDLINE | ID: mdl-31866087

ABSTRACT

OBJECTIVE: Cytotoxic CD8+ tumor infiltrating lymphocytes (TILs) can contribute to the benefit of hypofractionated radiation, but programmed cell death pathways (programmed cell death 1 and programmed cell death ligand 1 [PD-1/PD-L1]) may provide a mechanism of tumor immune escape. We therefore reviewed the influence of PD-1/PD-L1 and CD8+ TILs on survival after accelerated hypofractionated hemithoracic radiation followed by extrapleural pneumonectomy for malignant pleural mesothelioma (MPM). METHODS: Sixty-nine consecutive patients undergoing the protocol of Surgery for Mesothelioma after Radiation Therapy (SMART) between November 2008 and February 2016 were analyzed for the presence of PD-L1 on tumor cells, PD-1 on inflammatory cells, and CD8+ TILs. Comparison was made with a cohort of patients undergoing extrapleural pneumonectomy after induction chemotherapy (n = 14) and no induction (n = 2) between March 2005 and October 2008. PD-L1 expression on tumor cells ≥1% was considered positive. CD8+ TILs and PD-1 expression were scored as a percentage of positive cells. RESULTS: PD-L1 was negative in 75% of MPM after completion of SMART. CD8+ TILs ranged between 0.24% and 8.47% (median 2%). CD8+ TILs ≥2% was associated with significantly better survival in epithelioid MPM (median survival 3.7 years vs 2.3 years in CD8+ TILs <2%; P = .02). PD-L1 positivity was associated with worse survival in biphasic MPM (median survival, 0.4 years vs 1.5 years in biphasic PD-L1 negative tumors; P = .07) after SMART. Multivariate analysis demonstrated that epithelioid MPM, nodal disease, and CD8+ TILs were independent predictors of survival after SMART. CONCLUSIONS: The influence of tumor microenvironment on survival differs between epithelioid and nonepithelioid MPM. CD8+ TILs is an independent factor associated with better survival in epithelioid MPM treated with SMART.


Subject(s)
Mesothelioma , Pleural Neoplasms , Tumor Microenvironment/physiology , Adult , Aged , Aged, 80 and over , B7-H1 Antigen/analysis , CD8-Positive T-Lymphocytes/cytology , Female , Humans , Male , Mesothelioma/diagnosis , Mesothelioma/mortality , Mesothelioma/physiopathology , Mesothelioma/therapy , Middle Aged , Neoplastic Stem Cells/cytology , Pleura/chemistry , Pleura/surgery , Pleural Neoplasms/diagnosis , Pleural Neoplasms/mortality , Pleural Neoplasms/physiopathology , Pleural Neoplasms/therapy , Prognosis , Radiation Dose Hypofractionation
17.
Article in English | MEDLINE | ID: mdl-31867322

ABSTRACT

The formation of hypoxic microenvironments within solid tumors is known to contribute to radiation resistance, chemotherapy resistance, immune suppression, increased metastasis, and an overall poor prognosis. It is therefore crucial to understand the spatial and molecular mechanisms that contribute to tumor hypoxia formation to improve the efficacy of radiation treatment, develop hypoxia-directed therapies, and increase patient survival. The objective of this study is to present a number of complementary novel methods for quantifying tumor hypoxia and proliferation in multiplexed immunofluorescence images, especially in relation to the location of perfused blood vessels. A standard marker analysis strategy is to take a positive pixel count approach, in which a threshold for positive stain is used to compute a positive area fraction for hypoxia. This work is a reassessment of that approach, utilizing not only cell segmentation but also distance to nearest blood vessel in order to incorporate spatial information into the analysis. We describe a reproducible pipeline for the visualization and quantitative analysis of hypoxia using a vessel distance analysis approach. This methodological pipeline can serve to further elucidate the relationship between vessel distance and microenvironment-linked markers such as hypoxia and proliferation, can help to quantify parameters relating to oxygen consumption and hypoxic tolerance in tissues, as well as potentially serve as a hypothesis generating tool for future studies testing hypoxia-linked markers.

18.
J Cell Biol ; 218(9): 3134-3152, 2019 09 02.
Article in English | MEDLINE | ID: mdl-31371388

ABSTRACT

Regulated growth plate activity is essential for postnatal bone development and body stature, yet the systems regulating epiphyseal fusion are poorly understood. Here, we show that the tissue inhibitors of metalloprotease (TIMP) gene family is essential for normal bone growth after birth. Whole-body quadruple-knockout mice lacking all four TIMPs have growth plate closure in long bones, precipitating limb shortening, epiphyseal distortion, and widespread chondrodysplasia. We identify TIMP/FGF-2/IHH as a novel nexus underlying bone lengthening where TIMPs negatively regulate the release of FGF-2 from chondrocytes to allow IHH expression. Using a knock-in approach that combines MMP-resistant or ADAMTS-resistant aggrecans with TIMP deficiency, we uncouple growth plate activity in axial and appendicular bones. Thus, natural metalloprotease inhibitors are crucial regulators of chondrocyte maturation program, growth plate integrity, and skeletal proportionality. Furthermore, individual and combinatorial TIMP-deficient mice demonstrate the redundancy of metalloprotease inhibitor function in embryonic and postnatal development.


Subject(s)
Bone Development , Bone and Bones/metabolism , Chondrocytes/metabolism , Fibroblast Growth Factor 2/metabolism , Growth Plate/metabolism , Tissue Inhibitor of Metalloproteinases/metabolism , Animals , Fibroblast Growth Factor 2/genetics , Mice , Mice, Knockout , Tissue Inhibitor of Metalloproteinases/genetics
19.
Elife ; 82019 08 01.
Article in English | MEDLINE | ID: mdl-31368890

ABSTRACT

Multiple sclerosis (MS) is characterized by demyelinated and inflammatory lesions in the brain and spinal cord that are highly variable in terms of cellular content. Here, we used imaging mass cytometry (IMC) to enable the simultaneous imaging of 15+ proteins within staged MS lesions. To test the potential for IMC to discriminate between different types of lesions, we selected a case with severe rebound MS disease activity after natalizumab cessation. With post-acquisition analysis pipelines we were able to: (1) Discriminate demyelinating macrophages from the resident microglial pool; (2) Determine which types of lymphocytes reside closest to blood vessels; (3) Identify multiple subsets of T and B cells, and (4) Ascertain dynamics of T cell phenotypes vis-à-vis lesion type and location. We propose that IMC will enable a comprehensive analysis of single-cell phenotypes, their functional states and cell-cell interactions in relation to lesion morphometry and demyelinating activity in MS patients.


Subject(s)
Image Cytometry/methods , Leukocytes/classification , Leukocytes/pathology , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Adult , Female , Humans , Immunologic Factors/administration & dosage , Multiple Sclerosis/drug therapy , Natalizumab/administration & dosage , Proteins/analysis
20.
Am J Physiol Endocrinol Metab ; 317(5): E760-E772, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31310580

ABSTRACT

Adiponectin, a highly abundant polypeptide hormone in plasma, plays an important role in the regulation of energy metabolism in a wide variety of tissues, as well as providing important beneficial effects in diabetes, inflammation, and cardiovascular disease. To act on target tissues, adiponectin must move from the circulation to the interstitial space, suggesting that vascular permeability plays an important role in regulating adiponectin action. To test this hypothesis, fluorescently labeled adiponectin was used to monitor its biodistribution in mice with streptozotocin-induced diabetes (STZD). Adiponectin was, indeed, found to have increased sequestration in the highly fenestrated liver and other tissues within 90 min in STZD mice. In addition, increased myocardial adiponectin was detected and confirmed using computed tomography (CT) coregistration. This provided support of adiponectin delivery to affected cardiac tissue as a cardioprotective mechanism. Higher adiponectin content in the STZD heart tissues was further examined by ex vivo fluorescence molecular tomography (FMT) imaging, immunohistochemistry, and Western blot analysis. In vitro mechanistic studies using an endothelial monolayer on inserts and three-dimensional microvascular networks on microfluidic chips further confirmed that adiponectin flux was increased by high glucose. However, in the in vitro model and mouse heart tissue, high glucose levels did not change adiponectin receptor levels. An examination of the tight junction (TJ) complex revealed a decrease in the TJ protein claudin (CLDN)-7 in high glucose-treated endothelial cells, and the functional significance of this change was underscored by increased endothelium permeability upon siRNA-mediated knockdown of CLDN-7. Our data support the idea that glucose-induced effects on permeability of the vascular endothelium contribute to the actions of adiponectin by regulating its transendothelial movement from blood to the interstitial space. These observations are physiologically significant and critical when considering ways to harness the therapeutic potential of adiponectin for diabetes.


Subject(s)
Adiponectin/metabolism , Capillary Permeability , Diabetes Mellitus, Experimental/metabolism , Animals , Cell Line , Diabetes Mellitus, Experimental/pathology , Endothelial Cells/metabolism , Fluorescence , Gene Knockdown Techniques , Glucose/pharmacology , Humans , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Microcirculation , Myocardium/metabolism , Rats , Rats, Wistar , Tissue Distribution , Tomography/methods , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...