Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
bioRxiv ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38585810

ABSTRACT

Generating balanced populations of CD8 effector and memory T cells is necessary for immediate and durable immunity to infections and cancer. Yet, a definitive understanding of CD8 differentiation remains unclear. We used CARLIN, a processive lineage recording mouse model with single-cell RNA-seq and TCR-seq to track endogenous antigen-specific CD8 T cells during acute viral infection. We identified a diverse repertoire of expanded T-cell clones represented by seven transcriptional states. TCR enrichment analysis revealed differential memory- or effector-fate biases within clonal populations. Shared Vb segments and amino acid motifs were found within biased categories despite high TCR diversity. Using single-cell CARLIN barcode-seq we tracked multi-generational clones and found that unlike unbiased or memory-biased clones, which stably retain their fate profiles, effector-biased clones could adopt memory- or effector-bias within subclones. Collectively, our study demonstrates that a heterogenous T-cell repertoire specific for a shared antigen is composed of clones with distinct TCR-intrinsic fate-biases.

2.
Front Microbiol ; 14: 1197838, 2023.
Article in English | MEDLINE | ID: mdl-37779716

ABSTRACT

In recent years, there has been an unprecedented advancement in in situ analytical approaches that contribute to the mechanistic understanding of microbial communities by explicitly incorporating ecology and studying their assembly. In this study, we have analyzed the temporal profiles of the healthy broiler cecal microbiome from day 3 to day 35 to recover the stable and varying components of microbial communities. During this period, the broilers were fed three different diets chronologically, and therefore, we have recovered signature microbial species that dominate during each dietary regime. Since broilers were raised in multiple pens, we have also parameterized these as an environmental condition to explore microbial niches and their overlap. All of these analyses were performed in view of different parameters such as body weight (BW-mean), feed intake (FI), feed conversion ratio (FCR), and age (days) to link them to a subset of microbes that these parameters have a bearing upon. We found that gut microbial communities exhibited strong and statistically significant specificity for several environmental variables. Through regression models, genera that positively/negatively correlate with the bird's age were identified. Some short-chain fatty acids (SCFAs)-producing bacteria, including Izemoplasmatales, Gastranaerophilales, and Roseburia, have a positive correlation with age. Certain pathogens, such as Escherichia-Shigella, Sporomusa, Campylobacter, and Enterococcus, negatively correlated with the bird's age, which indicated a high disease risk in the initial days. Moreover, the majority of pathways involved in amino acid biosynthesis were also positively correlated with the bird's age. Some probiotic genera associated with improved performance included Oscillospirales; UCG-010, Shuttleworthia, Bifidobacterium, and Butyricicoccaceae; UCG-009. In general, predicted antimicrobial resistance genes (piARGs) contributed at a stable level, but there was a slight increase in abundance when the diet was changed. To the best of the authors' knowledge, this is one of the first studies looking at the stability, complexity, and ecology of natural broiler microbiota development in a temporal setting.

3.
G3 (Bethesda) ; 13(10)2023 09 30.
Article in English | MEDLINE | ID: mdl-37552705

ABSTRACT

There is increasing interest in the African spiny mouse (Acomys cahirinus) as a model organism because of its ability for regeneration of tissue after injury in skin, muscle, and internal organs such as the kidneys. A high-quality reference genome is needed to better understand these regenerative properties at the molecular level. Here, we present an improved reference genome for A. cahirinus generated from long Nanopore sequencing reads. We confirm the quality of our annotations using RNA sequencing data from 4 different tissues. Our genome is of higher contiguity and quality than previously reported genomes from this species and will facilitate ongoing efforts to better understand the regenerative properties of this organism.


Subject(s)
Murinae , Skin , Animals , Murinae/genetics , Muscle, Skeletal , Sequence Analysis, RNA
4.
bioRxiv ; 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37066261

ABSTRACT

There is increasing interest in the African spiny mouse ( Acomys cahirinus ) as a model organism because of its ability for regeneration of tissue after injury in skin, muscle, and internal organs such as the kidneys. A high-quality reference genome is needed to better understand these regenerative properties at the molecular level. Here, we present an improved reference genome for A. cahirinus generated from long Nanopore sequencing reads. We confirm the quality of our annotations using RNA sequencing data from four different tissues. Our genome is of higher contiguity and quality than previously reported genomes from this species and will facilitate ongoing efforts to better understand the regenerative properties of this organism.

5.
ACS Synth Biol ; 11(7): 2238-2246, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35695379

ABSTRACT

Recombinant DNA is a fundamental tool in biotechnology and medicine. These DNA sequences are often built, replicated, and delivered in the form of plasmids. Validation of these plasmid sequences is a critical and time-consuming step, which has been dominated for the last 35 years by Sanger sequencing. As plasmid sequences grow more complex with new DNA synthesis and cloning techniques, we need new approaches that address the corresponding validation challenges at scale. Here we prototype a high-throughput plasmid sequencing approach using DNA transposition and Oxford Nanopore sequencing. Our method, Circuit-seq, creates robust, full-length, and accurate plasmid assemblies without prior knowledge of the underlying sequence. We demonstrate the power of Circuit-seq across a wide range of plasmid sizes and complexities, generating full-length, contiguous plasmid maps. We then leverage our long-read data to characterize epigenetic marks and estimate plasmid contamination levels. Circuit-seq scales to large numbers of samples at a lower per-sample cost than commercial Sanger sequencing, accelerating a key step in synthetic biology, while low equipment costs make it practical for individual laboratories.


Subject(s)
Nanopore Sequencing , DNA/genetics , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , Synthetic Biology
6.
Cell Syst ; 13(6): 438-453.e5, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35452605

ABSTRACT

Mutations are acquired frequently, such that each cell's genome inscribes its history of cell divisions. Common genomic alterations involve loss of heterozygosity (LOH). LOH accumulates throughout the genome, offering large encoding capacity for inferring cell lineage. Using only single-cell RNA sequencing (scRNA-seq) of mouse brain cells, we found that LOH events spanning multiple genes are revealed as tracts of monoallelically expressed, constitutionally heterozygous single-nucleotide variants (SNVs). We simultaneously inferred cell lineage and marked developmental time points based on X chromosome inactivation and the total number of LOH events while identifying cell types from gene expression patterns. Our results are consistent with progenitor cells giving rise to multiple cortical cell types through stereotyped expansion and distinct waves of neurogenesis. This type of retrospective analysis could be incorporated into scRNA-seq pipelines and, compared with experimental approaches for determining lineage in model organisms, is applicable where genetic engineering is prohibited, such as humans.


Subject(s)
Loss of Heterozygosity , Single-Cell Analysis , Animals , Brain , Mice , Neurogenesis , Retrospective Studies , Single-Cell Analysis/methods
7.
Dev Cell ; 56(19): 2722-2740.e6, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34610329

ABSTRACT

Spiny mice (Acomys cahirinus) are terrestrial mammals that evolved unique scar-free regenerative wound-healing properties. Myofibroblasts (MFs) are the major scar-forming cell type in skin. We found that following traumatic injury to ear pinnae, MFs appeared rapidly in both Acomys and mouse yet persisted only in mouse. The timing of MF loss in Acomys correlated with wound closure, blastema differentiation, and nuclear localization of the Hippo pathway target protein Yap. Experiments in vitro revealed an accelerated PP2A-dependent dephosphorylation activity that maintained nuclear Yap in Acomys dermal fibroblasts (DFs) and was not detected in mouse or human DFs. Treatment of Acomys in vivo with the nuclear Yap-TEAD inhibitor verteporfin prolonged MF persistence and converted tissue regeneration to fibrosis. Forced Yap activity prevented and rescued TGF-ß1-induced human MF formation in vitro. These results suggest that Acomys evolved modifications of Yap activity and MF fate important for scar-free regenerative wound healing in vivo.


Subject(s)
Hippo Signaling Pathway/physiology , Wound Healing/physiology , YAP-Signaling Proteins/metabolism , Animals , Cicatrix/metabolism , Cicatrix/pathology , Ear/pathology , Mice , Murinae/physiology , Myofibroblasts/metabolism , Skin/metabolism
8.
Cancer Cell ; 39(8): 1150-1162.e9, 2021 08 09.
Article in English | MEDLINE | ID: mdl-34115987

ABSTRACT

The underpinnings of cancer metastasis remain poorly understood, in part due to a lack of tools for probing their emergence at high resolution. Here we present macsGESTALT, an inducible CRISPR-Cas9-based lineage recorder with highly efficient single-cell capture of both transcriptional and phylogenetic information. Applying macsGESTALT to a mouse model of metastatic pancreatic cancer, we recover ∼380,000 CRISPR target sites and reconstruct dissemination of ∼28,000 single cells across multiple metastatic sites. We find that cells occupy a continuum of epithelial-to-mesenchymal transition (EMT) states. Metastatic potential peaks in rare, late-hybrid EMT states, which are aggressively selected from a predominately epithelial ancestral pool. The gene signatures of these late-hybrid EMT states are predictive of reduced survival in both human pancreatic and lung cancer patients, highlighting their relevance to clinical disease progression. Finally, we observe evidence for in vivo propagation of S100 family gene expression across clonally distinct metastatic subpopulations.


Subject(s)
Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Pancreatic Neoplasms/pathology , Single-Cell Analysis/methods , Animals , CRISPR-Cas Systems , Cell Line, Tumor , Cell Lineage , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition/genetics , Humans , Male , Mice, Inbred NOD , Pancreatic Neoplasms/genetics , S100 Proteins/genetics , Sequence Analysis, RNA , Stem Cells/pathology , Xenograft Model Antitumor Assays
9.
Ann Appl Stat ; 15(1): 343-362, 2021 Mar.
Article in English | MEDLINE | ID: mdl-35990087

ABSTRACT

CRISPR technology has enabled cell lineage tracing for complex multicellular organisms through insertion-deletion mutations of synthetic genomic barcodes during organismal development. To reconstruct the cell lineage tree from the mutated barcodes, current approaches apply general-purpose computational tools that are agnostic to the mutation process and are unable to take full advantage of the data's structure. We propose a statistical model for the CRISPR mutation process and develop a procedure to estimate the resulting tree topology, branch lengths, and mutation parameters by iteratively applying penalized maximum likelihood estimation. By assuming the barcode evolves according to a molecular clock, our method infers relative ordering across parallel lineages, whereas existing techniques only infer ordering for nodes along the same lineage. When analyzing transgenic zebrafish data from McKenna, Findlay and Gagnon et al. (2016), we find that our method recapitulates known aspects of zebrafish development and the results are consistent across samples.

10.
Neuron ; 108(6): 1058-1074.e6, 2020 12 23.
Article in English | MEDLINE | ID: mdl-33068532

ABSTRACT

Neurogenesis comprises many highly regulated processes including proliferation, differentiation, and maturation. However, the transcriptional landscapes underlying brain development are poorly characterized. We describe a developmental single-cell catalog of ∼220,000 zebrafish brain cells encompassing 12 stages from embryo to larva. We characterize known and novel gene markers for ∼800 clusters and provide an overview of the diversification of neurons and progenitors across these time points. We also introduce an optimized GESTALT lineage recorder that enables higher expression and recovery of Cas9-edited barcodes to query lineage segregation. Cell type characterization indicates that most embryonic neural progenitor states are transitory and transcriptionally distinct from neural progenitors of post-embryonic stages. Reconstruction of cell specification trajectories reveals that late-stage retinal neural progenitors transcriptionally overlap cell states observed in the embryo. The zebrafish brain development atlas provides a resource to define and manipulate specific subsets of neurons and to uncover the molecular mechanisms underlying vertebrate neurogenesis.


Subject(s)
Brain/growth & development , Cell Lineage/physiology , Neurogenesis/physiology , Neurons/cytology , Zebrafish/genetics , Animals , Brain/cytology , Cell Differentiation/physiology , Gene Expression Regulation, Developmental
11.
Microbiome ; 8(1): 128, 2020 09 09.
Article in English | MEDLINE | ID: mdl-32907634

ABSTRACT

BACKGROUND: The factors affecting host-pathogen ecology in terms of the microbiome remain poorly studied. Chickens are a key source of protein with gut health heavily dependent on the complex microbiome which has key roles in nutrient assimilation and vitamin and amino acid biosynthesis. The chicken gut microbiome may be influenced by extrinsic production system parameters such as Placement Birds/m2 (stocking density), feed type and additives. Such parameters, in addition to on-farm biosecurity may influence performance and also pathogenic bacterial numbers such as Campylobacter. In this study, three different production systems 'Normal' (N), 'Higher Welfare' (HW) and 'Omega-3 Higher Welfare' (O) were investigated in an industrial farm environment at day 7 and day 30 with a range of extrinsic parameters correlating performance with microbial dynamics and Campylobacter presence. RESULTS: Our data identified production system N as significantly dissimilar from production systems HW and O when comparing the prevalence of genera. An increase in Placement Birds/m2 density led to a decrease in environmental pressure influencing the microbial community structure. Prevalence of genera, such as Eisenbergiella within HW and O, and likewise Alistipes within N were representative. These genera have roles directly relating to energy metabolism, amino acid, nucleotide and short chain fatty acid (SCFA) utilisation. Thus, an association exists between consistent and differentiating parameters of the production systems that affect feed utilisation, leading to competitive exclusion of genera based on competition for nutrients and other factors. Campylobacter was identified within specific production system and presence was linked with the increased diversity and increased environmental pressure on microbial community structure. Addition of Omega-3 though did alter prevalence of specific genera, in our analysis did not differentiate itself from HW production system. However, Omega-3 was linked with a positive impact on weight gain. CONCLUSIONS: Overall, our results show that microbial communities in different industrial production systems are deterministic in elucidating the underlying biological confounders, and these recommendations are transferable to farm practices and diet manipulation leading to improved performance and better intervention strategies against Campylobacter within the food chain. Video Abstract.


Subject(s)
Animal Husbandry , Campylobacter/isolation & purification , Chickens/microbiology , Gastrointestinal Microbiome , Animal Welfare , Animals , Campylobacter Infections/microbiology , Campylobacter Infections/veterinary , Chickens/metabolism , Weight Gain
12.
Development ; 146(12)2019 06 27.
Article in English | MEDLINE | ID: mdl-31249005

ABSTRACT

Every animal grows from a single fertilized egg into an intricate network of cell types and organ systems. This process is captured in a lineage tree: a diagram of every cell's ancestry back to the founding zygote. Biologists have long sought to trace this cell lineage tree in individual organisms and have developed a variety of technologies to map the progeny of specific cells. However, there are billions to trillions of cells in complex organisms, and conventional approaches can only map a limited number of clonal populations per experiment. A new generation of tools that use molecular recording methods integrated with single cell profiling technologies may provide a solution. Here, we summarize recent breakthroughs in these technologies, outline experimental and computational challenges, and discuss biological questions that can be addressed using single cell dynamic lineage tracing.


Subject(s)
Cell Lineage , Developmental Biology/trends , Single-Cell Analysis/methods , Algorithms , Animals , Cell Differentiation , DNA Barcoding, Taxonomic , Epigenesis, Genetic , Genetic Engineering , Green Fluorescent Proteins/metabolism , Humans , Models, Biological , Mutation , Phylogeny
13.
Nucleic Acids Res ; 47(15): 7989-8003, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31165867

ABSTRACT

Non-homologous end-joining (NHEJ) plays an important role in double-strand break (DSB) repair of DNA. Recent studies have shown that the error patterns of NHEJ are strongly biased by sequence context, but these studies were based on relatively few templates. To investigate this more thoroughly, we systematically profiled ∼1.16 million independent mutational events resulting from CRISPR/Cas9-mediated cleavage and NHEJ-mediated DSB repair of 6872 synthetic target sequences, introduced into a human cell line via lentiviral infection. We find that: (i) insertions are dominated by 1 bp events templated by sequence immediately upstream of the cleavage site, (ii) deletions are predominantly associated with microhomology and (iii) targets exhibit variable but reproducible diversity with respect to the number and relative frequency of the mutational outcomes to which they give rise. From these data, we trained a model that uses local sequence context to predict the distribution of mutational outcomes. Exploiting the bias of NHEJ outcomes towards microhomology mediated events, we demonstrate the programming of deletion patterns by introducing microhomology to specific locations in the vicinity of the DSB site. We anticipate that our results will inform investigations of DSB repair mechanisms as well as the design of CRISPR/Cas9 experiments for diverse applications including genome-wide screens, gene therapy, lineage tracing and molecular recording.


Subject(s)
CRISPR-Cas Systems , DNA Breaks, Double-Stranded , DNA End-Joining Repair , Mutation , Base Sequence , DNA Cleavage , Gene Editing , Genome, Human/genetics , Humans , Models, Genetic , Sequence Deletion
14.
Front Microbiol ; 9: 2452, 2018.
Article in English | MEDLINE | ID: mdl-30374341

ABSTRACT

Chickens are a key food source for humans yet their microbiome contains bacteria that can be pathogenic to humans, and indeed potentially to chickens themselves. Campylobacter is present within the chicken gut and is the leading cause of bacterial foodborne gastroenteritis within humans worldwide. Infection can lead to secondary sequelae such as Guillain-Barré syndrome and stunted growth in children from low-resource areas. Despite the global health impact and economic burden of Campylobacter, how and when Campylobacter appears within chickens remains unclear. The lack of day to day microbiome data with replicates, relevant metadata, and a lack of natural infection studies have delayed our understanding of the chicken gut microbiome and Campylobacter. Here, we performed a comprehensive day to day microbiome analysis of the chicken cecum from day 3 to 35 (12 replicates each day; final n = 379). We combined metadata such as chicken weight and feed conversion rates to investigate what the driving forces are for the microbial changes within the chicken gut over time, and how this relates to Campylobacter appearance within a natural habitat setting. We found a rapidly increasing microbial diversity up to day 12 with variation observed both in terms of genera and abundance, before a stabilization of the microbial diversity after day 20. In particular, we identified a shift from competitive to environmental drivers of microbial community from days 12 to 20 creating a window of opportunity whereby Campylobacter can appear. Campylobacter was identified at day 16 which was 1 day after the most substantial changes in metabolic profiles observed. In addition, microbial variation over time is most likely influenced by the diet of the chickens whereby significant shifts in OTU abundances and beta dispersion of samples often corresponded with changes in feed. This study is unique in comparison to the most recent studies as neither sampling was sporadic nor Campylobacter was artificially introduced, thus the experiments were performed in a natural setting. We believe that our findings can be useful for future intervention strategies and help reduce the burden of Campylobacter within the food chain.

15.
Cell Rep ; 24(13): 3607-3618, 2018 09 25.
Article in English | MEDLINE | ID: mdl-30257219

ABSTRACT

We present a method for automatically discovering signaling pathways from time-resolved phosphoproteomic data. The Temporal Pathway Synthesizer (TPS) algorithm uses constraint-solving techniques first developed in the context of formal verification to explore paths in an interaction network. It systematically eliminates all candidate structures for a signaling pathway where a protein is activated or inactivated before its upstream regulators. The algorithm can model more than one hundred thousand dynamic phosphosites and can discover pathway members that are not differentially phosphorylated. By analyzing temporal data, TPS defines signaling cascades without needing to experimentally perturb individual proteins. It recovers known pathways and proposes pathway connections when applied to the human epidermal growth factor and yeast osmotic stress responses. Independent kinase mutant studies validate predicted substrates in the TPS osmotic stress pathway.


Subject(s)
Protein Processing, Post-Translational , Proteome/metabolism , Proteomics/methods , Signal Transduction , Software , Cell Line , Humans , Phosphorylation
16.
Front Microbiol ; 9: 2002, 2018.
Article in English | MEDLINE | ID: mdl-30197638

ABSTRACT

Poultry is frequently associated with campylobacteriosis in humans, with Campylobacter jejuni being the most usual Campylobacter associated with disease in humans. Far-reaching research on Campylobacter was undertaken over the past two decades. This has resulted in interventions being put in place on farms and in processing plants. Despite these interventions, coupled with increased media coverage to educate the consumer on Campylobacter prevalence and campylobacteriosis, human health incidents are still high. Recent research is now shifting toward further understanding of the microorganisms to challenge interventions in place and to look at further and more relevant interventions for the reduction in human incidents. Farm practices play a key role in the control of colonization within poultry houses and among flocks. Prevalence at the farm level can be up to 100% and time of colonization may vary widely between flocks. Considerable research has been performed to understand how farm management and animal health practices can affect colonization on farms. This review will focus on farm practices to date as a baseline for future interventions as the microorganism becomes better understood. Further research is required to understand the chicken microbiome and factors influencing vertical transmission. The persistence of Campylobacter in animal and environmental reservoirs within and around farms requires further investigation to tailor farm practices toward preventing such reservoirs. IMPLICATIONS  This review gives an overview of farm practices and their effect on Campylobacter prevalence in poultry. Various elements of farm practices have been captured in this review.

17.
BMC Biol ; 16(1): 74, 2018 07 05.
Article in English | MEDLINE | ID: mdl-29976198

ABSTRACT

BACKGROUND: Genome-wide knockout studies, noncoding deletion scans, and other large-scale studies require a simple and lightweight framework that can quickly discover and score thousands of candidate CRISPR guides targeting an arbitrary DNA sequence. While several CRISPR web applications exist, there is a need for a high-throughput tool to rapidly discover and process hundreds of thousands of CRISPR targets. RESULTS: Here, we introduce FlashFry, a fast and flexible command-line tool for characterizing large numbers of CRISPR target sequences. With FlashFry, users can specify an unconstrained number of mismatches to putative off-targets, richly annotate discovered sites, and tag potential guides with commonly used on-target and off-target scoring metrics. FlashFry runs at speeds comparable to commonly used genome-wide sequence aligners, and output is provided as an easy-to-manipulate text file. CONCLUSIONS: FlashFry is a fast and convenient command-line tool to discover and score CRISPR targets within large DNA sequences.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Gene Editing , Sequence Analysis, DNA/methods , Software , Base Sequence , Databases, Genetic , Genome
18.
Nat Biotechnol ; 36(5): 442-450, 2018 06.
Article in English | MEDLINE | ID: mdl-29608178

ABSTRACT

The lineage relationships among the hundreds of cell types generated during development are difficult to reconstruct. A recent method, GESTALT, used CRISPR-Cas9 barcode editing for large-scale lineage tracing, but was restricted to early development and did not identify cell types. Here we present scGESTALT, which combines the lineage recording capabilities of GESTALT with cell-type identification by single-cell RNA sequencing. The method relies on an inducible system that enables barcodes to be edited at multiple time points, capturing lineage information from later stages of development. Sequencing of ∼60,000 transcriptomes from the juvenile zebrafish brain identified >100 cell types and marker genes. Using these data, we generate lineage trees with hundreds of branches that help uncover restrictions at the level of cell types, brain regions, and gene expression cascades during differentiation. scGESTALT can be applied to other multicellular organisms to simultaneously characterize molecular identities and lineage histories of thousands of cells during development and disease.


Subject(s)
CRISPR-Cas Systems/genetics , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Transcriptome/genetics , Animals , Brain/cytology , Brain/growth & development , Cell Lineage/genetics , Gene Editing/methods , Humans , Mice , Zebrafish
19.
Am J Hum Genet ; 101(2): 192-205, 2017 Aug 03.
Article in English | MEDLINE | ID: mdl-28712454

ABSTRACT

The extent to which non-coding mutations contribute to Mendelian disease is a major unknown in human genetics. Relatedly, the vast majority of candidate regulatory elements have yet to be functionally validated. Here, we describe a CRISPR-based system that uses pairs of guide RNAs (gRNAs) to program thousands of kilobase-scale deletions that deeply scan across a targeted region in a tiling fashion ("ScanDel"). We applied ScanDel to HPRT1, the housekeeping gene underlying Lesch-Nyhan syndrome, an X-linked recessive disorder. Altogether, we programmed 4,342 overlapping 1 and 2 kb deletions that tiled 206 kb centered on HPRT1 (including 87 kb upstream and 79 kb downstream) with median 27-fold redundancy per base. We functionally assayed programmed deletions in parallel by selecting for loss of HPRT function with 6-thioguanine. As expected, sequencing gRNA pairs before and after selection confirmed that all HPRT1 exons are needed. However, HPRT1 function was robust to deletion of any intergenic or deeply intronic non-coding region, indicating that proximal regulatory sequences are sufficient for HPRT1 expression. Although our screen did identify the disruption of exon-proximal non-coding sequences (e.g., the promoter) as functionally consequential, long-read sequencing revealed that this signal was driven by rare, imprecise deletions that extended into exons. Our results suggest that no singular distal regulatory element is required for HPRT1 expression and that distal mutations are unlikely to contribute substantially to Lesch-Nyhan syndrome burden. Further application of ScanDel could shed light on the role of regulatory mutations in disease at other loci while also facilitating a deeper understanding of endogenous gene regulation.


Subject(s)
CRISPR-Cas Systems/genetics , Gene Expression Regulation/genetics , Hypoxanthine Phosphoribosyltransferase/genetics , Regulatory Sequences, Nucleic Acid/genetics , Sequence Deletion/genetics , Cell Line , HEK293 Cells , Humans , Hypoxanthine Phosphoribosyltransferase/biosynthesis , Lesch-Nyhan Syndrome/genetics , RNA, Guide, Kinetoplastida/genetics , Thioguanine/metabolism
20.
PLoS One ; 12(6): e0178189, 2017.
Article in English | MEDLINE | ID: mdl-28594900

ABSTRACT

To further our understanding of the somatic genetic basis of uveal melanoma, we sequenced the protein-coding regions of 52 primary tumors and 3 liver metastases together with paired normal DNA. Known recurrent mutations were identified in GNAQ, GNA11, BAP1, EIF1AX, and SF3B1. The role of mutated EIF1AX was tested using loss of function approaches including viability and translational efficiency assays. Knockdown of both wild type and mutant EIF1AX was lethal to uveal melanoma cells. We probed the function of N-terminal tail EIF1AX mutations by performing RNA sequencing of polysome-associated transcripts in cells expressing endogenous wild type or mutant EIF1AX. Ribosome occupancy of the global translational apparatus was sensitive to suppression of wild type but not mutant EIF1AX. Together, these studies suggest that cells expressing mutant EIF1AX may exhibit aberrant translational regulation, which may provide clonal selective advantage in the subset of uveal melanoma that harbors this mutation.


Subject(s)
Genome, Human , Melanoma/genetics , Protein Biosynthesis/genetics , Uveal Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Eukaryotic Initiation Factor-1/genetics , Female , Humans , Male , Melanoma/pathology , Middle Aged , Mutation , Uveal Neoplasms/pathology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...