Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 233
Filter
1.
Eur J Appl Physiol ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38526610

ABSTRACT

AIM: Greater quantification and characterisation of training load (TL) throughout Live-high, train-high (LHTH) altitude (ALT) training is required to identify periodisation strategies that may lead to physiological and performance improvements in swimmers. PURPOSE: This study aimed to examine the physiological responses and performance outcomes of 14 high-performance swimmers (FINA points: 836.0 ± 35.1) following 3 weeks of LHTH at 2320 m, while characterising the training load periodisation strategy adopted during the intervention. METHODS: Haemoglobin (Hb) mass was measured pre-, 7 and 14 days post-ALT via CO rebreathing. Performance in each athlete's primary event at national standard meets were converted to FINA points and compared from pre-to-post-ALT. TL was quantified at sea level (SL) and ALT through session rating of perceived exertion (RPE), where duration of each session was multiplied by its RPE for each athlete, with all sessions totalled to give a weekly TL. Pre-to-post-ALT changes were evaluated using repeated-measures ANOVA. RESULTS: Hb mass increased significantly from 798 ± 182 g pre-ALT to 828 ± 187 g at 7 days post (p = 0.013) and 833 ± 205 g 14 days post-ALT (p = 0.026). Weekly TL increased from SL (3179 ± 638 au) during week one (4797 ± 1349 au, p < 0.001) and week two (4373 ± 967 au, p < 0.001), but not week three (3511 ± 730 au, p = 0.149). No evidence of improved SL swimming performance was identified. CONCLUSION: A periodisation strategy characterised by a sharp spike in TL followed by a slight de-load towards the end of a LHTH intervention led to improved physiological characteristics but no change in the competitive performance of high-performance swimmers.

2.
Eur J Appl Physiol ; 124(3): 681-751, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38206444

ABSTRACT

This historical review traces key discoveries regarding K+ and Na+ ions in skeletal muscle at rest and with exercise, including contents and concentrations, Na+,K+-ATPase (NKA) and exercise effects on plasma [K+] in humans. Following initial measures in 1896 of muscle contents in various species, including humans, electrical stimulation of animal muscle showed K+ loss and gains in Na+, Cl- and H20, then subsequently bidirectional muscle K+ and Na+ fluxes. After NKA discovery in 1957, methods were developed to quantify muscle NKA activity via rates of ATP hydrolysis, Na+/K+ radioisotope fluxes, [3H]-ouabain binding and phosphatase activity. Since then, it became clear that NKA plays a central role in Na+/K+ homeostasis and that NKA content and activity are regulated by muscle contractions and numerous hormones. During intense exercise in humans, muscle intracellular [K+] falls by 21 mM (range - 13 to - 39 mM), interstitial [K+] increases to 12-13 mM, and plasma [K+] rises to 6-8 mM, whilst post-exercise plasma [K+] falls rapidly, reflecting increased muscle NKA activity. Contractions were shown to increase NKA activity in proportion to activation frequency in animal intact muscle preparations. In human muscle, [3H]-ouabain-binding content fully quantifies NKA content, whilst the method mainly detects α2 isoforms in rats. Acute or chronic exercise affects human muscle K+, NKA content, activity, isoforms and phospholemman (FXYD1). Numerous hormones, pharmacological and dietary interventions, altered acid-base or redox states, exercise training and physical inactivity modulate plasma [K+] during exercise. Finally, historical research approaches largely excluded female participants and typically used very small sample sizes.


Subject(s)
Ouabain , Sodium-Potassium-Exchanging ATPase , Humans , Rats , Animals , Sodium-Potassium-Exchanging ATPase/metabolism , Ouabain/metabolism , Muscle, Skeletal/metabolism , Muscle Contraction , Hormones/metabolism , Protein Isoforms/metabolism , Ions/metabolism
3.
Heart ; 110(10): 740-748, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38148159

ABSTRACT

OBJECTIVES: Grading the severity of moderate mixed aortic stenosis and regurgitation (MAVD) is challenging and the disease poorly understood. Identifying markers of haemodynamic severity will improve risk stratification and potentially guide timely treatment. This study aims to identify prognostic haemodynamic markers in patients with moderate MAVD. METHODS: Moderate MAVD was defined as coexisting moderate aortic stenosis (aortic valve area (AVA) 1.0-1.5 cm2) and moderate aortic regurgitation (vena contracta (VC) 0.3-0.6 cm). Consecutive patients diagnosed between 2015 and 2019 were included from a multicentre registry. The primary composite outcome of death or heart failure hospitalisation was evaluated among these patients. Demographics, comorbidities, echocardiography and treatment data were assessed for their prognostic significance. RESULTS: 207 patients with moderate MAVD were included, aged 78 (66-84) years, 56% male sex, AVA 1.2 (1.1-1.4) cm2 and VC 0.4 (0.4-0.5) cm. Over a follow-up of 3.5 (2.5-4.7) years, the composite outcome was met in 89 patients (43%). Univariable associations with the primary outcome included older age, previous myocardial infarction, previous cerebrovascular event, atrial fibrillation, New York Heart Association >2, worse renal function, tricuspid regurgitation ≥2 and mitral regurgitation ≥2. Markers of biventricular systolic function, cardiac remodelling and transaortic valve haemodynamics demonstrated an inverse association with the primary composite outcome. In multivariable analysis, peak aortic jet velocity (Vmax) was independently and inversely associated with the composite outcome (HR: 0.63, 95% CI 0.43 to 0.93; p=0.021) in an adjusted model along with age (HR: 1.05, 95% CI 1.03 to 1.08; p<0.001), creatinine (HR: 1.002, 95% CI 1.001 to 1.003; p=0.005), previous cerebrovascular event (85% vs 42%; HR: 3.04, 95% CI 1.54 to 5.99; p=0.001) and left ventricular ejection fraction (LVEF) (HR: 0.97, 95% CI 0.95 to 0.99; p=0.007). Patients with Vmax ≤2.8 m/s and LVEF ≤50% (n=27) had the worst outcome compared with the rest of the population (72% vs 41%; HR: 3.87, 95% CI 2.20 to 6.80; p<0.001). CONCLUSIONS: Patients with truly moderate MAVD have a high incidence of death and heart failure hospitalisation (43% at 3.5 (2.5-4.7) years). Within this group, a high-risk group characterised by disproportionately low aortic Vmax (≤2.8 m/s) and adverse remodelling (LVEF ≤50%) have the worst outcomes.


Subject(s)
Aortic Valve Insufficiency , Aortic Valve Stenosis , Severity of Illness Index , Aged , Aged, 80 and over , Female , Humans , Male , Aortic Valve/diagnostic imaging , Aortic Valve/physiopathology , Aortic Valve Insufficiency/physiopathology , Aortic Valve Insufficiency/mortality , Aortic Valve Insufficiency/diagnosis , Aortic Valve Stenosis/physiopathology , Aortic Valve Stenosis/complications , Aortic Valve Stenosis/mortality , Aortic Valve Stenosis/diagnosis , Aortic Valve Stenosis/diagnostic imaging , Echocardiography , Heart Failure/physiopathology , Heart Failure/mortality , Hemodynamics , Prognosis , Registries , Retrospective Studies , Risk Assessment/methods , Risk Factors
4.
JMIR Form Res ; 7: e41974, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38064257

ABSTRACT

BACKGROUND: The demand for orthopedic specialist consultations for patients with osteoarthritis in public hospitals is high and continues to grow. Lengthy waiting times are increasingly affecting patients from low socioeconomic and culturally and linguistically diverse backgrounds who are more likely to rely on public health care. OBJECTIVE: This study aimed to co-design a digital health intervention for patients with OA who are waiting for an orthopedic specialist consultation at a public health service, which is located in local government areas (LGAs) of identified social and economic disadvantage. METHODS: The stakeholders involved in the co-design process included the research team; end users (patients); clinicians; academic experts; senior hospital staff; and a research, design, and development agency. The iterative co-design process comprised several key phases, including the collation and refinement of evidence-based information by the research team, with assistance from academic experts. Structured interviews with 16 clinicians (female: n=10, 63%; male: n=6, 38%) and 11 end users (age: mean 64.3, SD 7.2 y; female: n=7, 64%; male: n=4, 36%) of 1-hour duration were completed to understand the requirements for the intervention. Weekly workshops were held with key stakeholders throughout development. A different cohort of 15 end users (age: mean 61.5, SD 9.7 y; female: n=12, 80%; male: n=3, 20%) examined the feasibility of the study during a 2-week testing period. The System Usability Scale was used as the primary measure of intervention feasibility. RESULTS: Overall, 7 content modules were developed and refined over several iterations. Key themes highlighted in the clinician and end user interviews were the diverse characteristics of patients, the hierarchical structure with which patients view health practitioners, the importance of delivering information in multiple formats (written, audio, and visual), and access to patient-centered information as early as possible in the health care journey. All content was translated into Vietnamese, the most widely spoken language following English in the local government areas included in this study. Patients with hip and knee osteoarthritis from culturally and linguistically diverse backgrounds tested the feasibility of the intervention. A mean System Usability Scale score of 82.7 (SD 16) was recorded for the intervention, placing its usability in the excellent category. CONCLUSIONS: Through the co-design process, we developed an evidence-based, holistic, and patient-centered digital health intervention. The intervention was specifically designed to be used by patients from diverse backgrounds, including those with low health, digital, and written literacy levels. The effectiveness of the intervention in improving the physical and mental health of patients will be determined by a high-quality randomized controlled trial.

5.
Mult Scler Relat Disord ; 79: 104963, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37690438

ABSTRACT

BACKGROUND: Cognitive dysfunction is a pervasive symptom of multiple sclerosis (MS). Correlational evidence on the relationships between physical activity, sedentary behavior, and cognition has been mixed and limited to a few activity measures. The collinearity of accelerometry-based metrics has precluded an assessment of the full activity spectrum. Here, we aimed to examine the rich set of activity measures using analytic approaches suitable for collinear metrics. We investigated the combination of physical activity, sedentary, and clinicodemographic measures that explain the most variance in composite scores of working memory/processing speed, visual memory, and verbal memory. METHODS: We analyzed baseline accelerometry and neuropsychological data (n = 80) from a randomized controlled trial of pedometer tracking. Using partial least squares regression (PLSR), we built three models to predict latent scores on the three domains of cognition using 12 activity metrics, sex, education, and Expanded Disability Status Scale (EDSS) scores. Significance was assessed using linear regression models with model component scores as predictors and cognitive composites as outcomes. RESULTS: The latent component was significant for working memory/processing speed but was not significant for visual memory and verbal memory after Bonferroni correction. Working memory/processing speed was positively associated with average kilocalories, moderate-to-vigorous physical activity (MVPA), steps, and sex (i.e., higher scores in males) and negatively related to duration of long sedentary bouts and EDSS. CONCLUSIONS: These findings suggest that increasing overall energy expenditure through walking and MVPA, while decreasing prolonged sedentary time may positively benefit working memory/processing speed in people with MS. TRIAL REGISTRATION: This RCT #NCT03244696 was registered on Clinicaltrials.gov (https://www. CLINICALTRIALS: gov/ct2/show/NCT03244696).


Subject(s)
Multiple Sclerosis , Sedentary Behavior , Male , Humans , Cognition , Exercise , Multiple Sclerosis/complications , Accelerometry , Memory, Short-Term
6.
Eur J Appl Physiol ; 123(11): 2345-2378, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37584745

ABSTRACT

Perturbations in K+ have long been considered a key factor in skeletal muscle fatigue. However, the exercise-induced changes in K+ intra-to-extracellular gradient is by itself insufficiently large to be a major cause for the force decrease during fatigue unless combined to other ion gradient changes such as for Na+. Whilst several studies described K+-induced force depression at high extracellular [K+] ([K+]e), others reported that small increases in [K+]e induced potentiation during submaximal activation frequencies, a finding that has mostly been ignored. There is evidence for decreased Cl- ClC-1 channel activity at muscle activity onset, which may limit K+-induced force depression, and large increases in ClC-1 channel activity during metabolic stress that may enhance K+ induced force depression. The ATP-sensitive K+ channel (KATP channel) is also activated during metabolic stress to lower sarcolemmal excitability. Taking into account all these findings, we propose a revised concept in which K+ has two physiological roles: (1) K+-induced potentiation and (2) K+-induced force depression. During low-moderate intensity muscle contractions, the K+-induced force depression associated with increased [K+]e is prevented by concomitant decreased ClC-1 channel activity, allowing K+-induced potentiation of sub-maximal tetanic contractions to dominate, thereby optimizing muscle performance. When ATP demand exceeds supply, creating metabolic stress, both KATP and ClC-1 channels are activated. KATP channels contribute to force reductions by lowering sarcolemmal generation of action potentials, whilst ClC-1 channel enhances the force-depressing effects of K+, thereby triggering fatigue. The ultimate function of these changes is to preserve the remaining ATP to prevent damaging ATP depletion.


Subject(s)
Muscle Fatigue , Muscle, Skeletal , Humans , Muscle, Skeletal/physiology , Muscle Fatigue/physiology , Muscle Contraction/physiology , Action Potentials/physiology , Ions/metabolism , Adenosine Triphosphate/metabolism
7.
BMC Musculoskelet Disord ; 24(1): 599, 2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37481532

ABSTRACT

BACKGROUND: Musculoskeletal conditions, including osteoarthritis (OA), are a leading cause of disability and chronic pain, and are associated with high rates of comorbid depression. However, signs of depression are often masked by pain. The aim of this study was to determine the prevalence and severity of depression and pain in individuals awaiting specialist orthopaedic consultation. A secondary objective was to determine the relationship between pain and depression, irrespective of demographic factors and clinical diagnosis. METHODS: Cross-sectional analysis of individuals awaiting orthopaedic consultation at a public hospital in Melbourne, Australia. Relevant data were extracted from medical records and questionnaires. Descriptive statistics were used to summarise participant characteristics. The patient health questionnaire (PHQ-9) was used to assess depression and a numerical rating scale (NRS) was used to assess pain severity. Multiple linear regression analyses were used to establish the relationship between pain and depression. RESULTS: Nine hundred and eighty-six adults (mean ± standard deviation, age = 54.1 ± 15.7 years, 53.2% women) participated in the study. OA was present in 56% of the population and 34% of the entire population had moderate depression or greater, 19% of which met the criteria for major depressive disorder. Moderate-to-severe pain was present in 79% of individuals with OA and 55% of individuals with other musculoskeletal complaints. Pain was significantly associated with depression scores (ß = 0.84, adjusted R2 = 0.13, P < 0.001), and this relationship remained significant after accounting for gender, age, education and employment status, OA status, number of joints affected and waiting time (ß = 0.91, adjusted R2 = 0.19, P < 0.001). CONCLUSIONS: Depression affects one-third of individuals on an orthopaedic waitlist. A strong link between pain and depression in patients awaiting specialist orthopaedic consultation exists, indicating a need for an integrated approach in addressing pain management and depression to manage this complex and comorbid presentation.


Subject(s)
Chronic Pain , Depressive Disorder, Major , Orthopedics , Adult , Humans , Female , Middle Aged , Aged , Male , Cross-Sectional Studies , Prevalence , Depression/diagnosis , Depression/epidemiology
8.
J Mater Chem B ; 11(27): 6443-6452, 2023 07 12.
Article in English | MEDLINE | ID: mdl-37357544

ABSTRACT

Protein vesicles made from bioactive proteins have potential value in drug delivery, biocatalysis, and as artificial cells. As the proteins are produced recombinantly, the ability to precisely tune the protein sequence provides control not possible with polymeric vesicles. The tunability and biocompatibility motivated this work to develop protein vesicles using rationally designed protein building blocks to investigate how protein sequence influences vesicle self-assembly and properties. We have reported an elastin-like polypeptide (ELP) fused to an arginine-rich leucine zipper (ZR) and functional, globular proteins fused to a glutamate-rich leucine zipper (ZE) that self-assemble into protein vesicles when warmed from 4 to 25 °C due to the hydrophobic transition of ELP. Previously, we demonstrated the ability to tune vesicle properties by changing protein and salt concentration, ZE : ZR ratio, and warming rate. However, there is a limit to the properties that can be achieved via assembly conditions. In order to access a wider range of vesicle diameter and stability profiles, this work investigated how modifiying the hydrophobicity and length of the ELP sequence influenced self-assembly and the final properties of protein vesicles using mCherry as a model globular protein. The results showed that both transition temperature and diameter of protein vesicles were inversely correlated to the ELP guest residue hydrophobicity and the number of ELP pentapeptide repeats. Additionally, sequence manipulation enabled assembly of vesicles with properties not accessible by changes to assembly conditions. For example, introduction of tyrosine at 5 guest residue positions in ELP enabled formation of nanoscale vesicles stable at physiological salt concentration. This work yields design guidelines for modifying the ELP sequence to manipulate protein vesicle transition temperature, size and stability to achieve desired properties for particular biofunctional applications.


Subject(s)
Elastin , Peptides , Elastin/chemistry , Peptides/chemistry , Transition Temperature , Amino Acid Sequence , Drug Delivery Systems
9.
Pharmaceutics ; 15(5)2023 May 11.
Article in English | MEDLINE | ID: mdl-37242711

ABSTRACT

This randomized food effect study in healthy adult participants examined dispersible tablet formulations of fixed-dose combinations of dolutegravir/abacavir/lamivudine (TRIUMEQ) and dolutegravir/lamivudine (DOVATO). While adult tablet formulations of these combinations are currently approved for the treatment of human immunodeficiency virus, alternate formulations for children are urgently needed to facilitate appropriate pediatric dosing for patients who may have difficulty swallowing a conventional tablet. This study compared the effect of a high-fat, high-calorie meal on the pharmacokinetics, safety, and tolerability of dispersible tablet (DT) formulations of the two-drug and three-drug regimens, with administration under fasting conditions. Both the two-drug and three-drug dispersible tablet formulations, administered under fasting conditions and following a high-fat, high-calorie meal, were well tolerated in healthy participants. There were no clinically relevant differences in drug exposure for either regimen when administered with a high-fat meal as compared to under fasting conditions. Safety observations were similar for both treatments, either in the fed or fasted state. Both TRIUMEQ DT and DOVATO DT formulations can be administer with or without food.

10.
Article in English | MEDLINE | ID: mdl-36041782

ABSTRACT

High-fidelity protein localization is essential to define the identities and functions of different organelles and to maintain cellular homeostasis. Accurate localization of nascent proteins requires specific protein targeting pathways as well as quality control (QC) mechanisms to remove mislocalized proteins. The endoplasmic reticulum (ER) is the first destination for approximately one-third of the eukaryotic proteome and a major site of protein biosynthesis and QC. In mammalian cells, trafficking from the ER provides nascent proteins access to the extracellular space and essentially every cellular membrane and organelle except for mitochondria and possibly peroxisomes. Here, we discuss the biosynthetic mechanisms that deliver nascent proteins to the ER and the QC mechanisms that interface with the ER to correct or degrade mislocalized proteins.


Subject(s)
Endoplasmic Reticulum , Mitochondria , Animals , Endoplasmic Reticulum/metabolism , Protein Transport , Mitochondria/metabolism , Eukaryotic Cells/metabolism , Cell Membrane/metabolism , Mammals
11.
Mol Cell ; 82(22): 4277-4289.e10, 2022 11 17.
Article in English | MEDLINE | ID: mdl-36283413

ABSTRACT

The biosynthesis of thousands of proteins requires targeting a signal sequence or transmembrane segment (TM) to the endoplasmic reticulum (ER). These hydrophobic ɑ helices must localize to the appropriate cellular membrane and integrate in the correct topology to maintain a high-fidelity proteome. Here, we show that the P5A-ATPase ATP13A1 prevents the accumulation of mislocalized and misoriented proteins, which are eliminated by different ER-associated degradation (ERAD) pathways in mammalian cells. Without ATP13A1, mitochondrial tail-anchored proteins mislocalize to the ER through the ER membrane protein complex and are cleaved by signal peptide peptidase for ERAD. ATP13A1 also facilitates the topogenesis of a subset of proteins with an N-terminal TM or signal sequence that should insert into the ER membrane with a cytosolic N terminus. Without ATP13A1, such proteins accumulate in the wrong orientation and are targeted for ERAD by distinct ubiquitin ligases. Thus, ATP13A1 prevents ERAD of diverse proteins capable of proper folding.


Subject(s)
Endoplasmic Reticulum-Associated Degradation , Membrane Proteins , Animals , Membrane Proteins/genetics , Membrane Proteins/metabolism , Endoplasmic Reticulum/metabolism , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Mitochondrial Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Protein Sorting Signals , Protein Folding , Mammals/metabolism
12.
Otol Neurotol ; 43(9): e957-e962, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36075107

ABSTRACT

INTRODUCTION: Internal auditory canal (IAC) diverticula, also known as IAC cavitary lesions or anterior cupping of the IAC, observed in otopathologic specimens and high-resolution computed tomography (CT) scans of the temporal bone are thought to be related to otosclerosis. Herein, we examined the usefulness of CT scans in identifying diverticula and determined whether IAC diverticula are associated with otosclerosis on otopathology. METHODS: One hundred five consecutive specimens were identified from the National Temporal Bone Hearing and Balance Pathology Resource Registry. Inclusion criteria included the availability of histologic slides and postmortem specimen CT scans. Exclusion criteria included cases with severe postmortem changes or lesions causing bony destruction of the IAC. RESULTS: Ninety-seven specimens met criteria for study. Of these, 42% of the specimens were from male patients, and the average age of death was 77 years (SD = 18 yr). IAC diverticula were found in 48 specimens, of which 46% were identified in the CT scans. The mean area of the IAC diverticula was 0.34 mm 2 . The sensitivity and specificity of detecting IAC diverticula based on CT were 77% and 63%, respectively. Overall, 27% of specimens had otosclerosis. Histologic IAC diverticula were more common in specimens with otosclerosis than those without (37.5% versus 16%; p = 0.019). Cases with otosclerosis had a greater mean histologic diverticula area compared with nonotosclerosis cases (0.69 mm 2 versus 0.14 mm 2 ; p = 0.001). CONCLUSION: IAC diverticula are commonly found in otopathologic specimens with varied etiologies, but larger diverticula are more likely to be associated with otosclerosis. The sensitivity and specificity of CT scans to detect IAC diverticula are limited.


Subject(s)
Diverticulum , Ear, Inner , Otosclerosis , Aged , Diverticulum/complications , Diverticulum/diagnostic imaging , Ear, Inner/pathology , Humans , Male , Otosclerosis/complications , Otosclerosis/diagnostic imaging , Petrous Bone/pathology , Temporal Bone/pathology , Tomography, X-Ray Computed/methods
13.
BMC Geriatr ; 22(1): 666, 2022 08 13.
Article in English | MEDLINE | ID: mdl-35964000

ABSTRACT

BACKGROUND: Mindfulness meditation is a form of mind-body intervention that has increasing scientific support for its ability to reduce age-related declines in cognitive functioning, improve affective health, and strengthen the neural circuitry supporting improved cognitive and affective health. However, the majority of existent studies have been pilot investigations with small sample sizes, limited follow-up data, and a lack of attention to expectancy effects. Here, we present the study design of a Phase I/II, efficacy trial-HealthyAgers trial-that examines the benefits of a manualized mindfulness-based stress reduction program in improving attentional control and reducing mind-wandering in older adults. METHODS: One hundred fifty older adults (ages 65-85 years) will be randomized into one of two groups: an eight-week mindfulness program or an eight-week, placebo-controlled, lifestyle education program. Behavioral and neuroimaging assessments are conducted before and after the training. Participants are then invited to booster sessions once every three months for a period of 12 months with post-intervention follow-up assessments conducted at 6-months and 12-months. The primary outcomes for the study are behavioral measures of attentional control and mind-wandering. Additional, secondary outcomes include network strength in an a priori defined neuromarker of attentional control, fluid and everyday cognition, emotion regulation strategy use, and markers of inflammation. DISCUSSION: This study will establish the efficacy of a group-based, low-cost mind-body intervention for the inter-related facets of attentional control and mind-wandering in older adults. Strengths of this study include a well-designed, placebo-controlled comparison group, use of web/mobile application to track study adherence, and longitudinal follow-up. TRIAL REGISTRATION: Clinicaltrials.gov (# NCT03626532 ). Registered August 4, 2018.


Subject(s)
Attention , Mindfulness , Stress, Psychological , Aged , Aged, 80 and over , Attention/physiology , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Humans , Mindfulness/methods , Randomized Controlled Trials as Topic , Research Design , Stress, Psychological/prevention & control , Stress, Psychological/psychology
14.
J Physiol ; 600(16): 3749-3774, 2022 08.
Article in English | MEDLINE | ID: mdl-35837833

ABSTRACT

We investigated whether digoxin lowered muscle Na+ ,K+ -ATPase (NKA), impaired muscle performance and exacerbated exercise K+ disturbances. Ten healthy adults ingested digoxin (0.25 mg; DIG) or placebo (CON) for 14 days and performed quadriceps strength and fatiguability, finger flexion (FF, 105%peak-workrate , 3 × 1 min, fourth bout to fatigue) and leg cycling (LC, 10 min at 33% V O 2 peak ${\rm{V}}_{{{\rm{O}}}_{\rm{2}}{\rm{peak}}}$ and 67% V O 2 peak ${\rm{V}}_{{{\rm{O}}}_{\rm{2}}{\rm{peak}}}$ , 90% V O 2 peak ${\rm{V}}_{{{\rm{O}}}_{\rm{2}}{\rm{peak}}}$ to fatigue) trials using a double-blind, crossover, randomised, counter-balanced design. Arterial (a) and antecubital venous (v) blood was sampled (FF, LC) and muscle biopsied (LC, rest, 67% V O 2 peak ${\rm{V}}_{{{\rm{O}}}_{\rm{2}}{\rm{peak}}}$ , fatigue, 3 h after exercise). In DIG, in resting muscle, [3 H]-ouabain binding site content (OB-Fab ) was unchanged; however, bound-digoxin removal with Digibind revealed total ouabain binding (OB+Fab ) increased (8.2%, P = 0.047), indicating 7.6% NKA-digoxin occupancy. Quadriceps muscle strength declined in DIG (-4.3%, P = 0.010) but fatiguability was unchanged. During LC, in DIG (main effects), time to fatigue and [K+ ]a were unchanged, whilst [K+ ]v was lower (P = 0.042) and [K+ ]a-v greater (P = 0.004) than in CON; with exercise (main effects), muscle OB-Fab was increased at 67% V O 2 peak ${\rm{V}}_{{{\rm{O}}}_{\rm{2}}{\rm{peak}}}$ (per wet-weight, P = 0.005; per protein P = 0.001) and at fatigue (per protein, P = 0.003), whilst [K+ ]a , [K+ ]v and [K+ ]a-v were each increased at fatigue (P = 0.001). During FF, in DIG (main effects), time to fatigue, [K+ ]a , [K+ ]v and [K+ ]a-v were unchanged; with exercise (main effects), plasma [K+ ]a , [K+ ]v , [K+ ]a-v and muscle K+ efflux were all increased at fatigue (P = 0.001). Thus, muscle strength declined, but functional muscle NKA content was preserved during DIG, despite elevated plasma digoxin and muscle NKA-digoxin occupancy, with K+ disturbances and fatiguability unchanged. KEY POINTS: The Na+ ,K+ -ATPase (NKA) is vital in regulating skeletal muscle extracellular potassium concentration ([K+ ]), excitability and plasma [K+ ] and thereby also in modulating fatigue during intense contractions. NKA is inhibited by digoxin, which in cardiac patients lowers muscle functional NKA content ([3 H]-ouabain binding) and exacerbates K+ disturbances during exercise. In healthy adults, we found that digoxin at clinical levels surprisingly did not reduce functional muscle NKA content, whilst digoxin removal by Digibind antibody revealed an ∼8% increased muscle total NKA content. Accordingly, digoxin did not exacerbate arterial plasma [K+ ] disturbances or worsen fatigue during intense exercise, although quadriceps muscle strength was reduced. Thus, digoxin treatment in healthy participants elevated serum digoxin, but muscle functional NKA content was preserved, whilst K+ disturbances and fatigue with intense exercise were unchanged. This resilience to digoxin NKA inhibition is consistent with the importance of NKA in preserving K+ regulation and muscle function.


Subject(s)
Digoxin , Ouabain , Adult , Digoxin/metabolism , Fatigue , Humans , Muscle, Skeletal/physiology , Sodium/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism
15.
J Biol Eng ; 16(1): 14, 2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35698088

ABSTRACT

BACKGROUND: The brain extracellular environment is involved in many critical processes associated with neurodevelopment, neural function, and repair following injury. Organization of the extracellular matrix and properties of the extracellular space vary throughout development and across different brain regions, motivating the need for platforms that provide access to multiple brain regions at different stages of development. We demonstrate the utility of organotypic whole hemisphere brain slices as a platform to probe regional and developmental changes in the brain extracellular environment. We also leverage whole hemisphere brain slices to characterize the impact of cerebral ischemia on different regions of brain tissue. RESULTS: Whole hemisphere brain slices taken from postnatal (P) day 10 and P17 rats retained viable, metabolically active cells through 14 days in vitro (DIV). Oxygen-glucose-deprivation (OGD), used to model a cerebral ischemic event in vivo, resulted in reduced slice metabolic activity and elevated cell death, regardless of slice age. Slices from P10 and P17 brains showed an oligodendrocyte and microglia-driven proliferative response after OGD exposure, higher than the proliferative response seen in DIV-matched normal control slices. Multiple particle tracking in oxygen-glucose-deprived brain slices revealed that oxygen-glucose-deprivation impacts the extracellular environment of brain tissue differently depending on brain age and brain region. In most instances, the extracellular space was most difficult to navigate immediately following insult, then gradually provided less hindrance to extracellular nanoparticle diffusion as time progressed. However, changes in diffusion were not universal across all brain regions and ages. CONCLUSIONS: We demonstrate whole hemisphere brain slices from P10 and P17 rats can be cultured up to two weeks in vitro. These brain slices provide a viable platform for studying both normal physiological processes and injury associated mechanisms with control over brain age and region. Ex vivo OGD impacted cortical and striatal brain tissue differently, aligning with preexisting data generated in in vivo models. These data motivate the need to account for both brain region and age when investigating mechanisms of injury and designing potential therapies for cerebral ischemia.

16.
Otol Neurotol ; 43(6): e605-e612, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35761453

ABSTRACT

HYPOTHESIS: Computed tomography (CT) density measurement can be used to objectively distinguish otosclerosis from normal bone and to determine histologic grades of otosclerosis. BACKGROUND: Otosclerosis can be seen on CT as subtle radiolucent areas. An objective radiologic measurement that corresponds to known otosclerosis pathology may improve diagnostic accuracy, and could be used as a radiologic biomarker for otosclerosis grade. METHODS: A blinded, randomized evaluation of both histologic grade on histopathology slides and CT density measurement was performed on 78 human temporal bone specimens (31 with otosclerosis and 47 controls) that had undergone high-resolution multi-detector CT before histologic processing. Assessments were performed at 11 regions of interest (ROIs) in the otic capsule for each specimen. RESULTS: The CT density measurement mean (Hounsfield Units) ± standard deviation for all ROIs (Nos. 1-9) was 2245 ± 854 for grade 0 (no otosclerosis, n = 711), 1896 ± 317 for grade 1 (inactive otosclerosis, n = 109), and 1632 ± 255 for grades 2 and 3 combined (mixed/active otosclerosis, n 35). There was a strong inverse correlation of CT density to histologic grade at ROIs Nos. 1-5 (ANOVA, p < 0.0001). The inter-rater reliability for CT density was very good (correlation coefficient 0.87, p < 0.05). ROC curves suggested a cut-off of 2,150HU to distinguish otosclerosis from normal bone, and 1,811HU to distinguish low grade from mixed/high grade otosclerosis. CONCLUSIONS: In human temporal bone specimens, CT density may be used to distinguish normal bone from bone involved by otosclerosis. A higher histologic grade (i.e., indicating a more active otosclerotic focus) correlated with lower density.


Subject(s)
Otosclerosis , Biomarkers , Humans , Otosclerosis/pathology , Reproducibility of Results , Temporal Bone/diagnostic imaging , Temporal Bone/pathology , Tomography, X-Ray Computed/methods
17.
Arch Public Health ; 80(1): 103, 2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35361270

ABSTRACT

BACKGROUND: Osteoarthritis (OA) is a chronic, progressive condition that can be effectively managed via conservative treatments including exercise, weight management and education. Offering these treatments contemporaneously and digitally may increase adherence and engagement due to the flexibility and cost-effectiveness of digital program delivery. The objective of this review was to summarise the characteristics of current digital self-management interventions for individuals with OA and synthesise adherence and attrition outcomes. METHODS: Electronic databases were searched for randomised controlled trials utilising digital self-management interventions in individuals with OA. Two reviewers independently screened the search results and extracted data relating to study characteristics, intervention characteristics, and adherence and dropout rates. RESULTS: Eleven studies were included in this review. Intervention length ranged from 6 weeks to 9 months. All interventions were designed for individuals with OA and mostwere multi-component and were constructed around physical activity. The reporting of intervention adherence varied greatly between studies and limited the ability to form conclusions regarding the impact of intervention characteristics. However, of the seven studies that quantified adherence, six reported adherence > 70%. Seven of the included studies reported attrition rates < 20%, with contact and support from researchers not appearing to influence adherence or attrition. CONCLUSIONS: Holistic digital interventions designed for a targeted condition are a promising approach for promoting high adherence and reducing attrition. Future studies should explore how adherence of digital interventions compares to face-to-face interventions and determine potential influencers of adherence.

18.
Nat Commun ; 13(1): 1359, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35292639

ABSTRACT

Inner ear gene therapy using adeno-associated viral vectors (AAV) promises to alleviate hearing and balance disorders. We previously established the benefits of Anc80L65 in targeting inner and outer hair cells in newborn mice. To accelerate translation to humans, we now report the feasibility and efficiency of the surgical approach and vector delivery in a nonhuman primate model. Five rhesus macaques were injected with AAV1 or Anc80L65 expressing eGFP using a transmastoid posterior tympanotomy approach to access the round window membrane after making a small fenestra in the oval window. The procedure was well tolerated. All but one animal showed cochlear eGFP expression 7-14 days following injection. Anc80L65 in 2 animals transduced up to 90% of apical inner hair cells; AAV1 was markedly less efficient at equal dose. Transduction for both vectors declined from apex to base. These data motivate future translational studies to evaluate gene therapy for human hearing disorders.


Subject(s)
Dependovirus , Genetic Vectors , Animals , Cochlea/physiology , Dependovirus/genetics , Gene Transfer Techniques , Genetic Therapy/methods , Genetic Vectors/genetics , Macaca mulatta/genetics , Mice
19.
Neurosurgery ; 90(5): 506-514, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35229827

ABSTRACT

BACKGROUND: Local management for vestibular schwannoma (VS) is associated with excellent local control with focus on preserving long-term serviceable hearing. Fractionated proton radiation therapy (FPRT) may be associated with greater hearing preservation because of unique dosimetric properties of proton radiotherapy. OBJECTIVE: To investigate hearing preservation rates of FPRT in adults with VS and secondarily assess local control and treatment-related toxicity. METHODS: A prospective, single-arm, phase 2 clinical trial was conducted of patients with VS from 2010 to 2019. All patients had serviceable hearing at baseline and received FPRT to a total dose of 50.4 to 54 Gy relative biological effectiveness (RBE) over 28 to 30 fractions. Serviceable hearing preservation was defined as a Gardner-Robertson score of 1 to 2, measured by a pure tone average (PTA) of ≤50 dB and a word recognition score (WRS) of ≥50%. RESULTS: Twenty patients had a median follow-up of 4.0 years (range 1.0-5.0 years). Local control at 4 years was 100%. Serviceable hearing preservation at 1 year was 53% (95% CI 29%-76%), and primary end point was not yet reached. Median PTA and median WRS both worsened 1 year after FPRT (P < .0001). WRS plateaued after 6 months, whereas PTA continued to worsen up to 1 year after FPRT. Median cochlea D90 was lower in patients with serviceable hearing at 1 year (40.6 Gy [RBE] vs 46.9 Gy [RBE]), trending toward Wilcoxon rank-sum test statistical significance (P = .0863). Treatment was well-tolerated, with one grade 1 cranial nerve V dysfunction and no grade 2+ cranial nerve dysfunction. CONCLUSION: FPRT for VS did not meet the goal of serviceable hearing preservation. Higher cochlea doses trended to worsening hearing preservation, suggesting that dose to cochlea correlates with hearing preservation independent of treatment modality.


Subject(s)
Hearing Loss , Neuroma, Acoustic , Radiosurgery , Adult , Follow-Up Studies , Hearing , Hearing Loss/etiology , Hearing Loss/prevention & control , Humans , Neuroma, Acoustic/surgery , Prospective Studies , Protons , Radiosurgery/adverse effects , Retrospective Studies , Treatment Outcome
20.
Eur J Appl Physiol ; 122(3): 691-702, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35048183

ABSTRACT

PURPOSE: The cardiac T-wave peak-to-end interval (Tpe) is thought to reflect dispersion in ventricular repolarisation, with abnormalities in Tpe associated with increased risk of arrhythmia. Extracellular K+ modulates cardiac repolarisation, and since arterial plasma K+ concentration ([K+]) rapidly increases during and declines following exercise, we investigated the relationship between [K+] and Tpe with exercise. METHODS: Serial ECGs (Tpe, Tpe/QT ratio) and [K+] were obtained from 8 healthy, normokalaemic volunteers and 22 patients with end-stage renal disease (ESRD), at rest, during, and after exhaustive exercise. RESULTS: Post-exercise [K+] nadir was 3.1 ± 0.1, 5.0 ± 0.2 and 4.0 ± 0.1 mmol.L-1 (mean ± SEM) for healthy participants and ESRD patients before and after haemodialysis, respectively. In healthy participants, compared to pre-exercise, recovery-induced low [K+] was associated with a prolongation of Tpe (110 ± 8 vs. 87 ± 5 ms, respectively, p = 0.03) and an increase in Tpe/QT ratio (0.28 ± 0.01 vs. 0.23 ± 0.01, respectively, p = 0.01). Analyses of serial data revealed [K+] as a predictor of Tpe in healthy participants (ß = -0.54 ±0.05, p < 0.0001), in ESRD patients (ß = -0.75 ± 0.06, p < 0.0001) and for all data pooled (ß = -0.61 ± 0.04, p < 0.0001). The [K+] was also a predictor of Tpe/QT ratio in healthy participants and ESRD patients. CONCLUSIONS: Tpe and Tpe/QT ratio are predicted by [K+] during exercise. Low [K+] during recovery from exercise was associated with increased Tpe and Tpe/QT, indicating accentuated dispersion of ventricular repolarisation. The findings suggest that variations in [K+] with physical exertion may unmask electrophysiological vulnerabilities to arrhythmia.


Subject(s)
Arrhythmias, Cardiac/physiopathology , Kidney Failure, Chronic/physiopathology , Potassium/blood , Adult , Aged , Aged, 80 and over , Arrhythmias, Cardiac/blood , Biomarkers/blood , Case-Control Studies , Electrocardiography , Exercise Test , Female , Humans , Kidney Failure, Chronic/blood , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...