Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
PeerJ ; 11: e16163, 2023.
Article in English | MEDLINE | ID: mdl-37810791

ABSTRACT

The microbial fermentation behind sourdough bread is among our oldest technologies, yet there are many opportunities for sourdough science to learn from traditional bakers. We analyzed 16S rRNA sequences in R to assess the bacterial community structure and performance of 40 starters grown from 10 types of flour over 14 days, and identified six distinct stages of succession. At each stage, bacterial taxa correlate with determinants of bread quality including pH, rise, and aromatic profile. Day 1 starter cultures were dominated by microorganisms commonly associated with plants and flour, and by aromas similar to toasted grain/cereal. Bacterial diversity peaked from days 2-6 as taxa shifted from opportunistic/generalist bacteria associated with flour inputs, toward specialized climax bacterial communities (days 10-14) characterized by acid-tolerant taxa and fruity (p < 3.03e-03), sour (p < 1.60e-01), and fermented (p < 1.47e-05) aromas. This collection of traits changes predictably through time, regardless of flour type, highlighting patterns of bacterial constraints and dynamics that are conserved across systems and scales. Yet, while sourdough climax communities exhibit similar markers of maturity (i.e., pH ≤ 4 and enriched in Lactobacillus (mean abundance 48.1%), Pediococcus (mean abundance 22.7%), and/or Gluconobacter (mean abundance 19.1%)), we also detected specific taxa and aromas associated with each type of flour. Our results address important ecological questions about the relationship between community structure and starter performance, and may enable bakers to deliberately select for specific sourdough starter and bread characteristics.


Subject(s)
Bacteria , Flour , Flour/microbiology , RNA, Ribosomal, 16S/genetics , Fermentation , Bacteria/genetics , Lactobacillus/genetics
2.
Anim Microbiome ; 5(1): 27, 2023 May 05.
Article in English | MEDLINE | ID: mdl-37147724

ABSTRACT

BACKGROUND: Managed southern white rhinoceros (Ceratotherium simum simum) serve as assurance populations for wild conspecifics threatened by poaching and other anthropocentric effects, though many managed populations experience subfertility and reproductive failure. Gut microbiome and host health are inextricably linked, and reproductive outcomes in managed southern white rhinoceros may be mediated in part by their diet and gut microbial diversity. Thus, understanding microbial dynamics within managed populations may help improve conservation efforts. We characterized the taxonomic composition of the gut microbiome in the managed population of female southern white rhinoceros (n = 8) at the North Carolina Zoo and investigated the effects of seasonality (summer vs. winter) and age classes (juveniles (n = 2; 0-2 years), subadults (n = 2; 3-7 years), and adults (n = 4; >7 years)) on microbial richness and community structure. Collection of a fecal sample was attempted for each individual once per month from July-September 2020 and January-March 2021 resulting in a total of 41 samples analyzed. Microbial DNA was extracted and sequenced using the V3-V4 region of the 16S rRNA bacterial gene. Total operational taxonomic units (OTUs), alpha diversity (species richness, Shannon diversity), and beta diversity (Bray-Curtis dissimilarity, linear discriminant analysis effect size) indices were examined, and differentially enriched taxa were identified. RESULTS: There were differences (p < 0.05) in alpha and beta diversity indices across individuals, age groups, and sampling months. Subadult females had higher levels of Shannon diversity (Wilcoxon, p < 0.05) compared to adult females and harbored a community cluster distinct from both juveniles and adults. Samples collected during winter months (January-March 2021) possessed higher species richness and statistically distinct communities compared to summer months (July-September 2020) (PERMANOVA, p < 0.05). Reproductively active (n = 2) and currently nonreproductive adult females (n = 2) harbored differentially enriched taxa, with the gut microbiome of nonreproductive females significantly enriched (p = 0.001) in unclassified members of Mobiluncus, a genus which possesses species associated with poor reproductive outcomes in other animal species when identified in the cervicovaginal microbiome. CONCLUSION: Together, our results increase the understanding of age and season related microbial variation in southern white rhinoceros at the North Carolina Zoo and have identified a potential microbial biomarker for reproductive concern within managed female southern white rhinoceros.

3.
PeerJ ; 11: e15148, 2023.
Article in English | MEDLINE | ID: mdl-37123005

ABSTRACT

Gastrointestinal (GI) morphology plays an important role in nutrition, health, and epidemiology; yet limited data on GI variation have been collected since 1885. Here we demonstrate that students can collect reliable data sets on gut morphology; when they do, they reveal greater morphological variation for some structures in the GI tract than has been documented in the published literature. We discuss trait variability both within and among species, and the implications of that variability for evolution and epidemiology. Our results show that morphological variation in the GI tract is associated with each organ's role in food processing. For example, the length of many structures was found to vary significantly with feeding strategy. Within species, the variability illustrated by the coefficients of variation suggests that selective constraints may vary with function. Within humans, we detected significant Pearson correlations between the volume of the liver and the length of the appendix (t-value = 2.5278, df = 28, p = 0.0174, corr = 0.4311) and colon (t-value = 2.0991, df = 19, p = 0.0494, corr = 0.4339), as well as between the lengths of the small intestine and colon (t-value = 2.1699, df = 17, p = 0.0445, corr = 0.4657), which are arguably the most vital organs in the gut for nutrient absorption. Notably, intraspecific variation in the small intestine can be associated with life history traits. In humans, females demonstrated consistently and significantly longer small intestines than males (t-value15 = 2.245, p = 0.0403). This finding supports the female canalization hypothesis, specifically, increased female investment in the digestion and absorption of lipids.


Subject(s)
Gastrointestinal Tract , Intestine, Small , Male , Humans , Female , Colon
4.
Microb Ecol ; 85(4): 1608-1619, 2023 May.
Article in English | MEDLINE | ID: mdl-35562600

ABSTRACT

Most studies of wildlife gut microbiotas understandably rely on feces to approximate consortia along the gastrointestinal tract. We therefore compared microbiome structure and predicted metagenomic function in stomach, small intestinal, cecal, and colonic samples from 52 lemurs harvested during routine necropsies. The lemurs represent seven genera (Cheirogaleus, Daubentonia, Varecia, Hapalemur, Eulemur, Lemur, Propithecus) characterized by diverse feeding ecologies and gut morphologies. In particular, the hosts variably depend on fibrous foodstuffs and show correlative morphological complexity in their large intestines. Across host lineages, microbiome diversity, variability, membership, and function differed between the upper and lower gut, reflecting regional tradeoffs in available nutrients. These patterns related minimally to total gut length but were modulated by fermentation capacity (i.e., the ratio of small to large intestinal length). Irrespective of feeding strategy, host genera with limited fermentation capacity harbored more homogenized microbiome diversity along the gut, whereas those with expanded fermentation capacity harbored cecal and colonic microbiomes with greater diversity and abundant fermentative Ruminococcaceae taxa. While highlighting the value of curated sample repositories for retrospective comparisons, our results confirm that the need to survive on fibrous foods, either routinely or in hypervariable environments, can shape the morphological and microbial features of the lower gut.


Subject(s)
Lemur , Lemuridae , Microbiota , Strepsirhini , Animals , Retrospective Studies
5.
PLoS One ; 17(11): e0275850, 2022.
Article in English | MEDLINE | ID: mdl-36327319

ABSTRACT

Carnivores are ecologically important and sensitive to habitat loss and anthropogenic disruption. Here we measured trophic level and gut bacterial composition as proxies of carnivore ecological status across the Upper Peninsula, Michigan, for wild American marten (Martes americana; hereafter marten). In contrast to studies that have focused on omnivorous and herbivorous species, we find that marten, like other carnivore species without a cecum, are dominated by Firmicutes (52.35%) and Proteobacteria (45.31%) but lack Bacteroidetes. Additionally, a majority of the 12 major bacterial genera (occurring at ≥1%) are known hydrogen producers, suggesting these taxa may contribute to host energy requirements through fermentative production of acetate. Our study suggests that live trapping and harvest methods yield similar marten gut microbiome data. In addition, preserving undisturbed forest likely impacts marten ecology by measurably increasing marten trophic level and altering the gut microbiome. Our study underscores the utility of the gut microbiome as a tool to monitor the ecological status of wild carnivore populations.


Subject(s)
Carnivora , Gastrointestinal Microbiome , Mustelidae , Animals , Michigan , Ecosystem , Bacteria
6.
Sci Rep ; 12(1): 15415, 2022 09 22.
Article in English | MEDLINE | ID: mdl-36138067

ABSTRACT

The internal mechanisms responsible for modulating physiological condition, particularly those performed by the gut microbiome (GMB), remain under-explored in wildlife. However, as latitudinal and seasonal shifts in resource availability occur, the myriad micro-ecosystem services facilitated by the GMB may be especially important to wildlife health and resilience. Here, we use brown bears (Ursus arctos) as an ecological model to quantify the relationship between wildlife body condition metrics that are commonly used to assess individual and population-level health and GMB community composition and structure. To achieve these aims, we subsampled brown bear fecal samples collected during United States National Park Service research activities at three National Parks and Preserves (Katmai, Lake Clark, and Gates of the Arctic) and extracted microbial DNA for 16S rRNA amplicon sequencing and microbial taxonomic classification. We analyzed GMB communities using alpha diversity indices, subsequently using Spearman's correlation analysis to examine relationships between alpha diversity and brown bear health metrics. We found no differences in GMB composition among bears with differing body conditions, nor any correlations between alpha diversity and body condition. Our results indicate that GMB composition reflects diverse foraging strategies while allowing brown bears to achieve similar body condition outcomes.


Subject(s)
Gastrointestinal Microbiome , Ursidae , Animals , Ecosystem , Quality Indicators, Health Care , RNA, Ribosomal, 16S/genetics , Ursidae/physiology
7.
PLoS One ; 17(4): e0266698, 2022.
Article in English | MEDLINE | ID: mdl-35395042

ABSTRACT

Gut microbiomes (GMBs), complex communities of microorganisms inhabiting the gastrointestinal tracts of their hosts, perform countless micro-ecosystem services such as facilitating energy uptake and modulating immune responses. While scientists increasingly recognize the role GMBs play in host health, the role of GMBs in wildlife ecology and conservation has yet to be realized fully. Here, we use brown bears (Ursus arctos) as an ecological model to (1) characterize GMB community composition associated with location, season, and reproductive condition of a large omnivore; (2) investigate how both extrinsic and intrinsic factors influence GMB community membership and structure; and (3) quantify differences in GMB communities among different locations, seasons, sex, and reproductive conditions. To achieve these aims, we subsampled brown bear fecal samples collected during United States National Park Service research activities at three National Parks and Preserves (Katmai, Lake Clark, and Gates of the Arctic) and extracted microbial DNA for 16S rRNA amplicon sequencing and microbial taxonomic classification. We analyzed GMB communities using alpha and beta diversity indices, subsequently using linear mixed models to examine relationships between alpha diversity and extrinsic and intrinsic factors. Katmai brown bears hosted the greatest alpha diversity, whereas Gates brown bears hosted the least alpha diversity. Our results indicate that location and diet drive GMB variation, with bears hosting less phylogenetic diversity as park distance inland increases. Monitoring brown bear GMBs could enable managers to quickly detect and assess the impact of environmental perturbations on brown bear health. By integrating macro and micro-ecological perspectives we aim to inform local and landscape-level management decisions to promote long-term brown bear conservation and management.


Subject(s)
Gastrointestinal Microbiome , Ursidae , Animals , Ecosystem , Phylogeny , RNA, Ribosomal, 16S/genetics , Ursidae/physiology
8.
Front Microbiol ; 13: 966289, 2022.
Article in English | MEDLINE | ID: mdl-36620056

ABSTRACT

The gut microbiome and its physiological impacts on human and animal health is an area of research emphasis. Microbes themselves are invisible and may therefore be abstract and challenging to understand. It is therefore important to infuse this topic into undergraduate curricula, including Anatomy and Physiology courses, ideally through an active learning approach. To accomplish this, we developed a novel tactile teaching tool with guided-inquiry (TTT-GI) activity where students explored how the gut microbiome ferments carbohydrates to produce short chain fatty acids (SCFAs). This activity was implemented in two sections of a large-enrollment Human Anatomy and Physiology course at a research intensive (R1) university in the Spring of 2022 that was taught using a hyflex format. Students who attended class in person used commonly available building toys to assemble representative carbohydrates of varying structural complexity, whereas students who attended class virtually made these carbohydrate structures using a digital learning tool. Students then predicted how microbes within the gut would ferment different carbohydrates into SCFAs, as well as the physiological implications of the SCFAs. We assessed this activity to address three research questions, with 182 students comprising our sample. First, we evaluated if the activity learning objectives were achieved through implementation of a pre-and post-assessment schema. Our results revealed that all three learning objectives of this activity were attained. Next, we evaluated if the format in which this TTT-GI activity was implemented impacted student learning. While we found minimal and nonsignificant differences in student learning between those who attended in-person and those who attended remotely, we did find significant differences between the two course sections, which differed in length and spacing of the activity. Finally, we evaluated if this TTT-GI approach was impactful for diverse students. We observed modest and nonsignificant positive learning gains for some populations of students traditionally underrepresented in STEM (first-generation students and students with one or more disabilities). That said, we found that the greatest learning gains associated with this TTT-GI activity were observed in students who had taken previous upper-level biology coursework.

9.
Animals (Basel) ; 11(12)2021 Nov 28.
Article in English | MEDLINE | ID: mdl-34944176

ABSTRACT

The last few decades have seen an outpouring of gastrointestinal (GI) microbiome studies across diverse host species. Studies have ranged from assessments of GI microbial richness and diversity to classification of novel microbial lineages. Assessments of the "normal" state of the GI microbiome composition across multiple host species has gained increasing importance for distinguishing healthy versus diseased states. This study aimed to determine baselines and trends over time to establish "typical" patterns of GI microbial richness and diversity, as well as inter-individual variation, in three populations of western lowland gorillas (Gorilla gorilla gorilla) under human care at three zoological institutions in North America. Fecal samples were collected from 19 western lowland gorillas every two weeks for seven months (n = 248). Host identity and host institution significantly affected GI microbiome community composition (p < 0.05), although host identity had the most consistent and significant effect on richness (p = 0.03) and Shannon diversity (p = 0.004) across institutions. Significant changes in microbial abundance over time were observed only at Denver Zoo (p < 0.05). Our results suggest that individuality contributes to most of the observed GI microbiome variation in the study populations. Our results also showed no significant changes in any individual's microbial richness or Shannon diversity during the 7-month study period. While some microbial taxa (Prevotella, Prevotellaceae and Ruminococcaceae) were detected in all gorillas at varying levels, determining individual baselines for microbial composition comparisons may be the most useful diagnostic tool for optimizing non-human primate health under human care.

10.
PeerJ ; 9: e11389, 2021.
Article in English | MEDLINE | ID: mdl-34026358

ABSTRACT

The practice of sourdough bread-making is an ancient science that involves the development, maintenance, and use of a diverse and complex starter culture. The sourdough starter culture comes in many different forms and is used in bread-making at both artisanal and commercial scales, in countries all over the world. While there is ample scientific research related to sourdough, there is no standardized approach to using sourdough starters in science or the bread industry; and there are few recommendations on future directions for sourdough research. Our review highlights what is currently known about the microbial ecosystem of sourdough (including microbial succession within the starter culture), methods of maintaining sourdough (analogous to land management) on the path to bread production, and factors that influence the sensory qualities of the final baked product. We present new hypotheses for the successful management of sourdough starters and propose future directions for sourdough research and application to better support and engage the sourdough baking community.

11.
Elife ; 102021 01 26.
Article in English | MEDLINE | ID: mdl-33496265

ABSTRACT

Humans have relied on sourdough starter microbial communities to make leavened bread for thousands of years, but only a small fraction of global sourdough biodiversity has been characterized. Working with a community-scientist network of bread bakers, we determined the microbial diversity of 500 sourdough starters from four continents. In sharp contrast with widespread assumptions, we found little evidence for biogeographic patterns in starter communities. Strong co-occurrence patterns observed in situ and recreated in vitro demonstrate that microbial interactions shape sourdough community structure. Variation in dough rise rates and aromas were largely explained by acetic acid bacteria, a mostly overlooked group of sourdough microbes. Our study reveals the extent of microbial diversity in an ancient fermented food across diverse cultural and geographic backgrounds.


Sourdough bread is an ancient fermented food that has sustained humans around the world for thousands of years. It is made from a sourdough 'starter culture' which is maintained, portioned, and shared among bread bakers around the world. The starter culture contains a community of microbes made up of yeasts and bacteria, which ferment the carbohydrates in flour and produce the carbon dioxide gas that makes the bread dough rise before baking. The different acids and enzymes produced by the microbial culture affect the bread's flavor, texture and shelf life. However, for such a dependable staple, sourdough bread cultures and the mixture of microbes they contain have scarcely been characterized. Previous studies have looked at the composition of starter cultures from regions within Europe. But there has never been a comprehensive study of how the microbial diversity of sourdough starters varies across and between continents. To investigate this, Landis, Oliverio et al. used genetic sequencing to characterize the microbial communities of sourdough starters from the homes of 500 bread bakers in North America, Europe and Australasia. Bread makers often think their bread's unique qualities are due to the local environment of where the sourdough starter was made. However, Landis, Oliverio et al. found that geographical location did not correlate with the diversity of the starter cultures studied. The data revealed that a group of microbes called acetic acid bacteria, which had been overlooked in past research, were relatively common in starter cultures. Moreover, starters with a greater abundance of this group of bacteria produced bread with a strong vinegar aroma and caused dough to rise at a slower rate. This research demonstrates which species of bacteria and yeast are most commonly found in sourdough starters, and suggests geographical location has little influence on the microbial diversity of these cultures. Instead, the diversity of microbes likely depends more on how the starter culture was made and how it is maintained over time.


Subject(s)
Bacteria/metabolism , Bread/microbiology , Food Microbiology , Microbiota , Acetic Acid/metabolism
12.
Sci Rep ; 10(1): 20779, 2020 11 27.
Article in English | MEDLINE | ID: mdl-33247155

ABSTRACT

The gut microbiome (GMB), comprising the commensal microbial communities located in the gastrointestinal tract, has co-evolved in mammals to perform countless micro-ecosystem services to facilitate physiological functions. Because of the complex inter-relationship between mammals and their gut microbes, the number of studies addressing the role of the GMB on mammalian health is almost exclusively limited to human studies and model organisms. Furthermore, much of our knowledge of wildlife-GMB relationships is based on studies of colonic GMB communities derived from the feces of captive specimens, leaving our understanding of the GMB in wildlife limited. To better understand wildlife-GMB relationships, we engaged hunters as citizen scientists to collect biological samples from legally harvested black bears (Ursus americanus) and used 16S rRNA gene amplicon sequencing to characterize wild black bear GMB communities in the colon and jejunum, two functionally distinct regions of the gastrointestinal tract. We determined that the jejunum and colon of black bears do not harbor significantly different GMB communities: both gastrointestinal sites were dominated by Firmicutes and Proteobacteria. However, a number of bacteria were differentially enriched in each site, with the colon harboring twice as many enriched taxa, primarily from closely related lineages.


Subject(s)
Gastrointestinal Microbiome , Ursidae/microbiology , Animals , Animals, Wild/microbiology , Biodiversity , Colon/microbiology , Female , Firmicutes/classification , Firmicutes/genetics , Firmicutes/isolation & purification , Gastrointestinal Microbiome/genetics , Jejunum/microbiology , Male , Phylogeny , Proteobacteria/classification , Proteobacteria/genetics , Proteobacteria/isolation & purification , RNA, Ribosomal, 16S/genetics
13.
Exp Lung Res ; 45(7): 200-208, 2019 09.
Article in English | MEDLINE | ID: mdl-31298956

ABSTRACT

Aim: The aim of this study was to investigate the short-term effect of levofloxacin on the microbiota of healthy lungs. Material and methods: Male F344 rats received either no levofloxacin (n = 9), intravenous levofloxacin (n = 12), oral levofloxacin (n = 12), or subcutaneous levofloxacin (n = 14). Rats received a clinically applicable dose (5.56 mg/kg) of levofloxacin via the assigned delivery route once daily for three days. On day four, lung tissue was collected and the lung microbiota composition was investigated using 16S ribosomal RNA gene sequencing. Results: Untreated lungs showed a microbiota dominated by bacteria of the genera Serratia. After treatment with levofloxacin, bacteria of the genus Pantoea dominated the lung microbiota. This was observed for all routes of antibiotic administration, with a significant difference compared to no-antibiotic control group (PERMANOVA: P < 0.001; homogeneity of dispersions: P = 0.656). Conclusion: Our study is the first to demonstrate the effects of levofloxacin therapy on lung microbiota in laboratory rats. Levofloxacin treatment by any route of administration leads to profound changes in the rat lung microbiota, resulting in the predominance of bacteria belonging to the genus Pantoea. Further studies regarding the role of long-term application of broad spectrum antibiotics on induction of lung, allergic and autoimmune diseases are indicated.


Subject(s)
Anti-Bacterial Agents/adverse effects , Levofloxacin/adverse effects , Lung/microbiology , Microbiota/drug effects , Animals , Drug Evaluation, Preclinical , Lung/drug effects , Male , Rats, Inbred F344
14.
Am J Primatol ; 81(10-11): e22986, 2019 10.
Article in English | MEDLINE | ID: mdl-31081142

ABSTRACT

Feeding strategy and diet are increasingly recognized for their roles in governing primate gut microbiome (GMB) composition. Whereas feeding strategy reflects evolutionary adaptations to a host's environment, diet is a more proximate measure of food intake. Host phylogeny, which is intertwined with feeding strategy, is an additional, and often confounding factor that shapes GMBs across host lineages. Nocturnal strepsirrhines are an intriguing and underutilized group in which to examine the links between these three factors and GMB composition. Here, we compare GMB composition in four species of captive, nocturnal strepsirrhines with varying feeding strategies and phylogenetic relationships, but nearly identical diets. We use 16S rRNA sequences to determine gut bacterial composition. Despite similar husbandry conditions, including diet, we find that GMB composition varies significantly across host species and is linked to host feeding strategy and phylogeny. The GMBs of the omnivorous and the frugivorous species were significantly more diverse than were those of the insectivorous and exudativorous species. Across all hosts, GMBs were enriched for bacterial taxa associated with the macronutrient resources linked to the host's respective feeding strategy. Ultimately, the reported variation in microbiome composition suggests that the impacts of captivity and concurrent diet do not overshadow patterns of feeding strategy and phylogeny. As our understanding of primate GMBs progresses, populations of captive primates can provide insight into the evolution of host-microbe relationships, as well as inform future captive management protocols that enhance primate health and conservation.


Subject(s)
Diet/veterinary , Gastrointestinal Microbiome , Strepsirhini/microbiology , Animals , Bacteria/classification , Bacteria/genetics , Feeding Behavior , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Species Specificity , Strepsirhini/physiology
15.
Am J Primatol ; 81(10-11): e22974, 2019 10.
Article in English | MEDLINE | ID: mdl-30932230

ABSTRACT

Research on animal microbiomes is increasingly aimed at determining the evolutionary and ecological factors that govern host-microbiome dynamics, which are invariably intertwined and potentially synergistic. We present three empirical studies related to this topic, each of which relies on the diversity of Malagasy lemurs (representing a total of 19 species) and the comparative approach applied across scales of analysis. In Study 1, we compare gut microbial membership across 14 species in the wild to test the relative importance of host phylogeny and feeding strategy in mediating microbiome structure. Whereas host phylogeny strongly predicted community composition, the same feeding strategies shared by distant relatives did not produce convergent microbial consortia, but rather shaped microbiomes in host lineage-specific ways, particularly in folivores. In Study 2, we compare 14 species of wild and captive folivores, frugivores, and omnivores, to highlight the importance of captive populations for advancing gut microbiome research. We show that the perturbational effect of captivity is mediated by host feeding strategy and can be mitigated, in part, by modified animal management. In Study 3, we examine various scent-gland microbiomes across three species in the wild or captivity and show them to vary by host species, sex, body site, and a proxy of social status. These rare data provide support for the bacterial fermentation hypothesis in olfactory signal production and implicate steroid hormones as mediators of microbial community structure. We conclude by discussing the role of scale in comparative microbial studies, the links between feeding strategy and host-microbiome coadaptation, the underappreciated benefits of captive populations for advancing conservation research, and the need to consider the entirety of an animal's microbiota. Ultimately, these studies will help move the field from exploratory to hypothesis-driven research.


Subject(s)
Feeding Behavior , Lemuridae/microbiology , Microbiota , Scent Glands/microbiology , Animal Husbandry , Animals , Diet/veterinary , Female , Gastrointestinal Microbiome , Host Microbial Interactions , Madagascar , Male , Phylogeny
16.
Exp Biol Med (Maywood) ; 244(6): 471-483, 2019 04.
Article in English | MEDLINE | ID: mdl-30760029

ABSTRACT

IMPACT STATEMENT: The composition of the microbiota is of critical importance for health and disease, and is receiving increased scientific and medical scrutiny. Of particular interest is the role of changing diets as a function of agriculture and, perhaps to an even greater extent, modern food processing. To probe the connection between diet and the gut's microbial community, the microbiota from a mole rat, a rodent with a relatively unusual diet, was analyzed in detail, and the microbes found were compared with previously identified organisms. The results show evidence of an adaptive radiation of some microbial clades, but relative stability in others. This suggests that the microbiota, like the genome, carries with it housekeeping components as well as other components which can evolve rapidly when the environment changes. This study provides a very broad view of the niche space in the gut and how factors such as diet might influence that niche space.


Subject(s)
Gastrointestinal Microbiome , Mole Rats/microbiology , Animals , Biological Evolution , Diet , Ecosystem
17.
Exp Lung Res ; 44(4-5): 201-210, 2018.
Article in English | MEDLINE | ID: mdl-30465452

ABSTRACT

AIM OF THE STUDY: The pulmonary microbiota is important for both normal homeostasis and the progression of disease, and may be affected by aspiration of gastric fluid. The aim of this study was to investigate changes in the lung microbiota induced by aspiration of gastric fluid in a laboratory rat model. MATERIAL AND METHODS: Using the intratracheal application method, male rats received aspiration with 0.9% normal saline (n = 11); gastric fluid (n = 24) or sterilized (gamma-irradiated) gastric fluid (n = 12) once-weekly for four weeks. On the fifth week, the animals were sacrificed, and the microbiota of the lung was assessed by 16S ribosomal RNA gene sequencing. RESULTS: Lungs without aspiration and lungs after aspiration with normal saline had similar microbial compositions, dominated by bacteria of the genera Serratia, Ralstonia and Brucella. Evaluation of the microbiota following aspiration of gastric fluid revealed a much different profile that was dominated by bacteria from the genera Romboutsia and Turicibacter and largely independent of sterilization of the gastric fluid. CONCLUSION: In a laboratory rat model, aspiration with gastric fluid caused a substantial shift of the lung microbiota that could be characterized as a shift from Proteobacteria towards Firmicutes, possibly of enteric origin. Bacteria contained in the gastric fluid are not apparently responsible for this change.


Subject(s)
Lung/microbiology , Microbiota , Respiratory Aspiration/microbiology , Animals , Body Fluids/microbiology , Firmicutes/genetics , Firmicutes/isolation & purification , Male , Proteobacteria/genetics , Proteobacteria/isolation & purification , RNA, Ribosomal, 16S/analysis , Rats , Stomach/microbiology
18.
Sci Rep ; 8(1): 14482, 2018 09 27.
Article in English | MEDLINE | ID: mdl-30262842

ABSTRACT

The gut microbiome (GMB) of folivores metabolizes dietary fiber into nutrients, including short-chain fatty acids (SCFAs); however, experiments probing the consequences of foliage quality on host GMBs are lacking. We therefore examined GMB structure and function via amplicon sequencing and Nuclear Magnetic Resonance spectroscopy in 31 captive sifakas (Propithecus coquereli) during dietary manipulations associated with husbandry. Supplementing standard diets with diverse foliage blends, versus with a single plant species, promoted more diverse GMBs, enriched for taxa implicated in plant-fiber metabolism, but depleted in taxa implicated in starch metabolism and bile tolerance. The consumption of diverse blends was associated with greater concentrations of colonic SCFAs. Abundant foliage, via forest access, promoted compositionally distinct and more stable GMBs, but reduced concentrations of SCFAs, possibly reflecting selection of high-quality leaves. In 11 subjects denied forest access, we examined the temporal pace of microbial shifts when supplemental foliage was abruptly switched between diverse blends and single species. The sifaka GMB responded within days, with community diversity and composition closely tracking foliage diversity. By providing experimental evidence that the folivore GMB is sensitive to minor changes in dietary foliage, we reveal the fragility of specialist GMBs, with implications for managing the wellbeing of endangered wildlife.


Subject(s)
Gastrointestinal Microbiome/physiology , Herbivory/physiology , Metabolome/physiology , Strepsirhini , Animals , Female , Male , Strepsirhini/metabolism , Strepsirhini/microbiology
19.
Am J Phys Anthropol ; 166(4): 960-967, 2018 08.
Article in English | MEDLINE | ID: mdl-29665003

ABSTRACT

OBJECTIVES: The aye-aye (Daubentonia madagascariensis) is famous for its feeding strategies that target structurally defended, but high-quality resources. Nonetheless, the influence of this digestible diet on gut microbial contributions to aye-aye metabolism and nutrition remains unexplored. When four captive aye-ayes were unexpectedly lost to persin toxicity, we opportunistically collected samples along the animals' gastrointestinal tracts. Here we describe the diversity and composition of appendicular, cecal, and colonic consortia relative to the aye-aye's unusual feeding ecology. MATERIALS AND METHODS: During necropsies, we collected digestive content from the appendix, cecum, and distal colon. We determined microbiome structure at these sites via amplicon sequencing of the 16S rRNA gene and an established bioinformatics pipeline. RESULTS: The aye-ayes' microbiomes exhibited low richness and diversity compared to the consortia of other lemurs housed at the same facility, and were dominated by a single genus, Prevotella. Appendicular microbiomes were differentiated from more homogenized cecal and colonic consortia by lower richness and diversity, greater evenness, and a distinct taxonomic composition. DISCUSSION: The simplicity of the aye-aye's gut microbiome could be attributed to captivity-induced dysbiosis, or it may reflect this species' extreme foraging investment in a digestible diet that requires little microbial metabolism. Site-specific appendicular consortia, but more similar cecal and colonic consortia, support the theory that the appendix functions as a safe-house for beneficial bacteria, and confirm fecal communities as fairly reliable proxies for consortia along the lower gut. We encourage others to make similar use of natural or accidental losses for probing the primate gut microbiome.


Subject(s)
Appendix/microbiology , Bacteria/genetics , Colon/microbiology , Gastrointestinal Microbiome/physiology , Strepsirhini , Animals , Animals, Zoo , Bacteria/classification , DNA, Bacterial/analysis , DNA, Bacterial/genetics , Fatty Alcohols/poisoning , Female , Male , Strepsirhini/microbiology , Strepsirhini/physiology
20.
Microb Ecol ; 76(1): 272-284, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29188302

ABSTRACT

Bamboo specialization is one of the most extreme examples of convergent herbivory, yet it is unclear how this specific high-fiber diet might selectively shape the composition of the gut microbiome compared to host phylogeny. To address these questions, we used deep sequencing to investigate the nature and comparative impact of phylogenetic and dietary selection for specific gut microbial membership in three bamboo specialists-the bamboo lemur (Hapalemur griseus, Primates: Lemuridae), giant panda (Ailuropoda melanoleuca, Carnivora: Ursidae), and red panda (Ailurus fulgens, Carnivora: Musteloideadae), as well as two phylogenetic controls-the ringtail lemur (Lemur catta) and the Asian black bear (Ursus thibetanus). We detected significantly higher Shannon diversity in the bamboo lemur (10.029) compared to both the giant panda (8.256; p = 0.0001936) and the red panda (6.484; p = 0.0000029). We also detected significantly enriched bacterial taxa that distinguished each species. Our results complement previous work in finding that phylogeny predominantly governs high-level microbiome community structure. However, we also find that 48 low-abundance OTUs are shared among bamboo specialists, compared to only 8 OTUs shared by the bamboo lemur and its sister species, the ringtail lemur (Lemur catta, a generalist). Our results suggest that deep sequencing is necessary to detect low-abundance bacterial OTUs, which may be specifically adapted to a high-fiber diet. These findings provide a more comprehensive framework for understanding the evolution and ecology of the microbiome as well as the host.


Subject(s)
Bacteria/classification , Bambusa , Diet , Gastrointestinal Microbiome , Host Microbial Interactions/physiology , Primates/microbiology , Ailuridae/microbiology , Animal Feed , Animals , Bacteria/genetics , Biodiversity , DNA, Bacterial/genetics , Feces/microbiology , Female , Herbivory , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Species Specificity , Ursidae/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...